
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Low-Overhead Software Transactional Memory
with Progress Guarantees and Strong Semantics ∗

Minjia Zhang Jipeng Huang † Man Cao Michael D. Bond
Ohio State University (USA)

{zhanminj,huangjip,caoma,mikebond}@cse.ohio-state.edu

Abstract
Software transactional memory offers an appealing alternative to
locks by improving programmability, reliability, and scalability.
However, existing STMs are impractical because they add high
instrumentation costs and often provide weak progress guarantees
and/or semantics.

This paper introduces a novel STM called LarkTM that provides
three significant features. (1) Its instrumentation adds low overhead
except when accesses actually conflict, enabling low single-thread
overhead and scaling well on low-contention workloads. (2) It
uses eager concurrency control mechanisms, yet naturally supports
flexible conflict resolution, enabling strong progress guarantees. (3)
It naturally provides strong atomicity semantics at low cost.

LarkTM’s design works well for low-contention workloads, but
adds significant overhead under higher contention, so we design
an adaptive version of LarkTM that uses alternative concurrency
control for high-contention objects.

An implementation and evaluation in a Java virtual machine
show that the basic and adaptive versions of LarkTM not only
provide low single-thread overhead, but their multithreaded perfor-
mance compares favorably with existing high-performance STMs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments

Keywords Software transactional memory, concurrency control,
biased reader–writer locks, strong atomicity, managed languages

1. Introduction
While scientific programs have been parallel for decades, general-
purpose software must become more parallel to scale with succes-
sive hardware generations that provide more—instead of faster—
cores. However, it is notoriously challenging to write lock-based,
shared-memory parallel programs that are correct and scalable.

∗ This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.
† The second author contributed to this work while a graduate student at
Ohio State, and currently works at Epic Systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/2688500.2688510

An appealing alternative to lock-based synchronization is trans-
actional memory (TM) [25, 31]. In the TM model, programs spec-
ify atomic regions of code, which the system executes speculatively
as transactions. To ensure serializability, the system detects con-
flicting transactions, rolls back their state, and re-executes them.

TM is not a panacea. It does not help if atomicity is specified
incorrectly or too conservatively; it does not help with specifying
ordering constraints; and it does not handle irrevocable operations
such as I/O well. However, TM has significant potential to improve
productivity, reliability, and scalability by allowing programmers to
specify atomicity with the ease of coarse-grained locks while pro-
viding the scalability of fine-grained locks [42]. TM also enables
runtime system support, e.g., for speculative optimization [40].

Despite these potential benefits, TM is not widely used. Re-
cent HTM support is limited, still relying on efficient software TM
(STM) support (Section 2.1). Existing STMs are impractical be-
cause they add high overhead—making it hard to achieve good per-
formance even if STM scales well—and also often provide weak
guarantees. These drawbacks have led some researchers to ques-
tion the viability of STM and call it a “research toy” [11, 20, 59].

This paper introduces a novel STM called LarkTM that pro-
vides very low instrumentation costs. At the same time, its de-
sign naturally guarantees progress and strong semantics. Three key
features distinguish LarkTM from existing STMs. First, it uses bi-
ased per-object, reader–writer locks [6, 33], which a thread relin-
quishes only when needed by another thread performing a con-
flicting access—making non-conflicting accesses fast but requiring
threads to coordinate when accesses conflict. Second, LarkTM de-
tects and resolves transactional conflicts (conflicts between transac-
tions or between a transaction and non-transactional access) when
threads coordinate, enabling flexible conflict resolution that guar-
antees progress. Third, LarkTM provides strong atomicity seman-
tics with low overhead by acquiring its low-overhead locks at both
transactional and non-transactional accesses.

This basic approach, which we call LarkTM-O, adds low single-
thread overhead and scales well under low contention. But scalabil-
ity suffers under higher contention due to the high cost of threads
coordinating. We design an adaptive version of LarkTM called
LarkTM-S that handles high-contention accesses, identified by pro-
filing, using different concurrency control mechanisms.

We have implemented LarkTM-O and LarkTM-S in a high-
performance Java virtual machine. We have also implemented two
STMs from prior work, NOrec [15] and an STM we call Intel-
STM [49], and compare them against LarkTM-O and LarkTM-S.

We evaluate overhead and scalability on a Java port of the
transactional STAMP benchmarks [10]. The evaluation focuses on
1–8 threads because all STMs that we evaluate provide almost no
scalability benefit for more threads, due to scalability limitations of
STAMP and our parallel platform. LarkTM-O and LarkTM-S add
significantly lower single-thread overhead (slowdowns of 1.40X

and 1.73X, respectively) than NOrec and IntelSTM (2.88X and
3.32X, respectively).

LarkTM-O’s scalability suffers due to the high cost of threads
coordinating at conflicts, but LarkTM-S scales well and provides
the best overall performance. For 8 application threads, LarkTM-O
and LarkTM-S execute the TM programs 1.09X and 1.72X faster
than NOrec, and 1.27X and 2.01X faster than IntelSTM.
Contributions. This paper makes several contributions:

• a novel STM called LarkTM that (i) adds low overhead by mak-
ing non-conflicting accesses fast, (ii) provides strong progress
guarantees, and (iii) supports strong semantics efficiently;
• a novel approach for integrating LarkTM’s concurrency control

mechanism with an existing STM concurrency control mech-
anism that has different tradeoffs, yielding basic and adaptive
STM versions (LarkTM-O and LarkTM-S);
• implementations of (i) LarkTM-O and LarkTM-S and (ii) two

high-performance STMs from prior work; and
• an evaluation on transactional benchmarks that shows that Lark-

TM-O and LarkTM-S achieve low overhead and good scalabil-
ity, thus outperforming existing high-performance STMs.

2. Background, Motivation, and Related Work
Commodity hardware TM (HTM) requires a software TM (STM)
fallback. But existing STMs incur high overhead in order to detect
and resolve conflicts, and often provide weak progress guarantees
and/or weak semantics.

2.1 HTM Is Limited and Needs STM
HTM detects and resolves conflicts by piggybacking on cache co-
herence protocols and provides versioning by extending caches
(e.g., [24, 31, 38]). Recently, Intel’s Transactional Synchroniza-
tion Extensions (TSX) and IBM’s Blue Gene/Q provide HTM sup-
port [56, 58]. However, this hardware support is limited: it does
not guarantee completion of any transaction. In order to provide
language-level support for atomic blocks, limited HTM relies on
STM to execute transactions that the hardware fails to commit.
Prior work on hybrid software–hardware TM has concluded that
efficient STM is essential for good overall performance [5].

Furthermore, limited HTM support does not necessarily offer
the best performance for short transactions. Recent evaluations of
Intel TSX show that the set-up and tear-down costs of a transac-
tion are about the same as three atomic operations (e.g., compare-
and-swap instructions) [43, 58]. Our LarkTM, which avoids atomic
operations altogether, may thus perform competitively with current
limited HTM for short, low-contention transactions—but a com-
parison is beyond the scope of this paper.

2.2 Concurrency Control
A key activity of STMs is performing concurrency control: detect-
ing and resolving conflicts between transactions and (for strongly
atomic STMs) between transactions and non-transactional ac-
cesses. STMs can perform concurrency control either eagerly (at
the conflicting access) or lazily (typically at commit time).

A key cost of concurrency control is synchronization, typi-
cally in the form of atomic operations (e.g., compare-and-swap)
on STM metadata. Eager concurrency control typically requires
that STM instrumentation use synchronization at every program
memory access. By instead using lazy concurrency control, STMs
can avoid such frequent synchronization, although they often incur
other costs as a result.

Recent high-performance STMs typically use lazy concurrency
control [15, 18, 20, 21, 41, 52] (although SwissTM detects write–
write conflicts eagerly [20, 21]). A high-performance STM that we
implement and compare against is NOrec, which defers conflict de-

tection until commit time [15]. NOrec uses a single global sequence
lock to commit buffered stores safely. It logs each read’s value, so
it can validate at commit time that the value is unchanged. Lazy
concurrency control incurs overhead to log and later validate reads,
and to buffer and later commit writes (although prior work suggests
these overheads can be minimized with engineering effort [15, 50]).

Recent high-performance STMs have largely avoided using ea-
ger concurrency control for reads (so-called “visible readers”),
since each read requires atomic operations on metadata (e.g., to add
a reader to a reader–writer lock) [19]. A few STMs have used ea-
ger concurrency control for both reads and writes, which provides
progress guarantees as we shall see, but adds substantial synchro-
nization overhead [30, 35].

Some STMs have used eager concurrency control for writes, but
lazy concurrency control for reads (so-called “invisible reads”) in
order to avoid synchronization costs at reads [28, 45, 47, 49]. No-
tably, we implement and compare against an STM that we call In-
telSTM, Shpeisman et al.’s strongly atomic version [49] of McRT-
STM [45]. IntelSTM and other mixed-mode STMs detect write–
write and write–read conflicts eagerly but detect read–write con-
flicts lazily by logging reads and validating them later.

2.3 Progress Guarantees
STMs can suffer from livelock: two or more threads’ transactions
repeatedly cause each other to abort and retry. STMs that use lazy
concurrency control for both reads and writes can help to guaran-
tee freedom from livelock. For example, NOrec can always com-
mit at least one transaction among a set of concurrent transac-
tions [15]. (Lazy mechanisms provide two additional benefits in
prior work. First, they help to provide sandboxing guarantees for
unsafe languages such as C and C++ [13]. In contrast, our de-
sign targets safe languages and does not require sandboxing; Sec-
tion 3.6. Second, for high-contention workloads, lazy concurrency
control helps make contention management, i.e., choosing which
conflicting transaction to abort, more effective by deferring deci-
sions until commit time [50].)

Although fully lazy STMs can help to guarantee livelock free-
dom, they cannot generally guarantee starvation freedom: not only
will at least one thread’s transaction eventually commit, but every
thread’s transaction will eventually commit. STMs that use eager
concurrency control for both reads and writes, including our Lark-
TM, can guarantee not only livelock freedom but also starvation
freedom, as long as they provide support for aborting either thread
involved in a conflict (since this flexibility enables age-based con-
tention management; Section 3.4) [23]. (An interesting related de-
sign is InvalSTM, which uses fully lazy concurrency control and
allows a thread to abort another thread’s transaction [22].)

In contrast, STMs such as IntelSTM that mix lazy and eager
concurrency control struggle to guarantee livelock freedom: since
any transaction that fails read validation must abort, all running
transactions can repeatedly fail read validation and abort [23, 49].

2.4 Transactional Semantics
Most STMs provide weak atomicity: transactions appear to exe-
cute atomically only with respect to other transactions, not non-
transactional accesses. Researchers generally agree that weakly
atomic STMs must provide at least single global lock atomic-
ity (SLA) semantics [27, 37] (or a relaxed variant such as asym-
metric lock atomicity [36]). Under SLA, an execution behaves as
though each transaction were replaced with a critical section ac-
quiring the same global lock. SLA (and its variants, for the most
part) provide safety for so-called privatization and publication pat-
terns, which involve data-race-free conflicts between transactions
and non-transactional accesses [1, 39, 49].

To support SLA (or one of its variants), STMs often must com-
promise performance. For example, STMs can provide privatiza-

tion safety using techniques that can hurt scalability [59], such as
by committing transactions in the same order that they started [36,
51, 57], or by committing writes using a global lock [15].

A stronger memory model than SLA is strong atomicity (also
called strong isolation), which provides atomicity of transactions
with respect to non-transactional accesses. Strong atomicity not
only provides privatization and publication safety, but it executes
each transaction atomically even if it races with non-transactional
accesses. Strong atomicity enables programmers to reason locally
about the semantics of atomic blocks, which is particularly use-
ful when not all non-transactional code is fully understood, tested,
or trusted (e.g., third-party libraries) [47]. Unintentional and in-
tentional data races are common in (non-transactional) real-world
software and lead to erroneous behaviors; Adve and Boehm have
argued that racy programs need stronger behavior guarantees [3].
Furthermore, HTM naturally provides strong atomicity, making
strongly atomic STM appealing for use in hybrid TM.

Some researchers have argued that despite these benefits, strong
atomicity is not worth its costs in existing STMs [12, 14]. By pro-
viding strong atomicity naturally at low cost, this paper’s STM of-
fers a new data point to consider in the tradeoff between perfor-
mance and semantics.

Prior work on strongly atomic STM. Prior work has sought to re-
duce strong atomicity’s cost. Shpeisman et al. use whole-program
static analysis and dynamic thread escape analysis to identify
thread-local accesses that cannot conflict with a transaction and
thus do not need expensive instrumentation [49]. That paper’s eval-
uation reports relatively low overheads but uses the simple, mostly
single-threaded SPECjvm98 benchmarks.

Schneider et al. and Bronson et al. reduce strong atomicity’s
cost by optimistically assuming that non-transactional accesses will
not access transactional data, and recompiling accesses that violate
this assumption [7, 47]. In a similar spirit, Abadi et al. use commod-
ity hardware–based memory protection to handle strong atomicity
conflicts [2]. Both approaches rely on non-transactional code al-
most never accessing memory accessed by transactions, or else the
performance penalty is substantial.

2.5 Summary
STMs have struggled to provide good performance, as well as
progress guarantees and strong semantics. High-performance STMs
typically use lazy concurrency control for reads (to avoid high syn-
chronization costs) combined with lazy concurrency control for
writes (to guarantee progress). However, the resulting designs in-
cur single-thread overhead and sometimes hurt scalability. Single-
thread overhead is crucial because it is the starting point for multi-
threaded performance. Existing STMs’ performance has been poor
mainly due to high single-thread overhead [11, 59].

3. Design
This section describes a novel STM called LarkTM. LarkTM uses
instrumentation at reads and writes that adds low overhead com-
pared to prior work. Furthermore, its design naturally supports
strong progress guarantees and strong atomicity semantics.

LarkTM’s concurrency control uses biased locks that make non-
conflicting accesses fast, but incur significant costs for conflicting
accesses. Section 3.6 describes a version of LarkTM that adaptively
uses alternative concurrency control for high-conflict objects.

3.1 Biased Reader–Writer Locks
Existing STMs—whether they use lazy or eager concurrency con-
trol for writes—have generally avoided the high cost of eager con-
currency control for reads (Section 2.2). Acquiring a reader lock
requires an atomic operation that triggers extraneous remote cache
misses at read-shared accesses.

Code Transition Old Program New Sync.
path(s) type state access state needed

Fast Same state
WrExT R/W by T Same

NoneRdExT R by T Same
RdSh R by T Same

Fast &

Upgrading
RdExT W by T WrExT Atomic

slow

RdExT1 R by T2 RdSh operation

Conflicting

WrExT1 W by T2 WrExT2
WrExT1 R by T2 RdExT2 Roundtrip
RdExT1 W by T2 WrExT2 coordination
RdSh W by T WrExT

Table 1. State transitions for biased reader–writer locks.

In contrast, LarkTM uses eager concurrency control for both
reads and writes, by using so-called biased locks that avoid syn-
chronization operations as much as possible [6, 33, 44, 46, 54].
LarkTM’s biased reader–writer locks, which are based on prior
work called Octet [6], support concurrent readers efficiently, en-
abling multiple concurrent readers to an object without synchro-
nization. Furthermore, the locks naturally support conflict resolu-
tion that allows either thread to abort.

Existing STMs typically have not employed biased locking. An
exception is Hindman and Grossman’s STM that uses biased locks
for concurrency control [32]. However, its locks do not support
concurrent readers, and its conflict resolution does not support
either transaction aborting.

LarkTM assigns a biased reader–writer lock to each object (e.g.,
the lock can be a word added to the object’s header). Unlike tradi-
tional locks, each biased lock is always “acquired” for reading or
writing by one or more threads. Each lock has one of the follow-
ing states at any given time: WrExT (write exclusive for thread T),
RdExT (read exclusive for T), or RdSh (read shared). A newly allo-
cated object’s lock starts in WrExT state (T is the allocating thread).

Instrumentation before each memory access performs a lock ac-
quire operation to ensure the accessed object’s lock is in a suitable
state. Table 1 shows all possible state transitions for acquiring a
lock, based on the access and the current state. In the common case,
the lock’s state does not need to change (e.g., a read or write by
T to an object locked in WrExT state). In other cases, the acquire
operation upgrades the lock’s state (e.g., from RdExT1 to RdSh at a
read by T2), using an atomic operation to avoid racing with another
thread changing the state.

Otherwise, the lock’s state conflicts with the pending access.
Consider the following example, where a thread T2 performs a
conflicting read to an object initially locked in WrExT1 state:

T1
atomic {

...
// can race with T2:
o. f = ...;
}

T2

/∗ conflicting lock acquire ∗/
... = o.f ;

T2 cannot simply change the lock’s state to RdExT2 because of the
possibility that T1 will simultaneously and racily write to o, as the
example shows. Among other issues, this race could lead to the
transaction committing potentially unserializable results. Instead,
each conflicting lock acquire must coordinate with thread(s) that
hold the lock, to ensure they do not continue accessing the object
racily. Coordination, described next, provides a natural opportunity
to perform transactional conflict detection and conflict resolution.
3.2 Handling Lock Conflicts with Coordination
This section describes the coordination protocol that LarkTM uses
to change a lock’s state prior to a conflicting access. LarkTM
extends prior work’s coordination protocol [6] to perform conflict
detection and resolution.

(a) Explicit protocol: (1) respT ac-
cessed an object o at some prior
time. (2) reqT wants to access o. It
changes o’s lock to IntreqT and en-
ters a blocked state, waiting for re-

spT’s response. (3) respT reaches a
safe point. (4) respT handles the re-
quest: it detects and resolves trans-
actional conflicts (Sections 3.3–3.4)
and then responds. (5) respT leaves
the safe point and aborts if needed.
(6) reqT sees the response and the
result of conflict resolution. (7) If
reqT needs to abort, it reverts o’s
lock’s state, unblocks, and aborts
immediately (Section 3.4); other-
wise, reqT changes o’s lock’s state
to WrExreqT or RdExreqT and pro-
ceeds to access o.

(b) Implicit protocol: (1) respT ac-
cessed o at some prior time. (2) re-

spT enters a blocked state before
performing some blocking opera-
tion. (3) reqT’s changes o’s lock’s
state to IntreqT. (4) reqT places respT
into a blocked and held state while
it detects and resolves transactional
conflicts (Sections 3.3–3.4). (5) re-

spT finishes blocking but waits un-
til hold(s) have been removed; (6)
reqT removes the hold on respT.
If reqT should abort, it reverts
o’s lock’s state and aborts (Sec-
tion 3.4); otherwise, reqT changes
o’s lock’s state to WrExreqT or
RdExreqT and proceeds to access o.
(7) respT leaves the blocked and
held state, and aborts if needed.

Figure 1. Details of the two versions of LarkTM’s coordination protocol.

Before a thread, called the requesting thread, reqT, can perform
a conflicting lock acquire (last four rows of Table 1), it must first co-
ordinate with thread(s) that might otherwise continue accessing the
object under the lock’s old state. The thread(s) that can access the
object under the lock’s current state are the responding thread(s).
The following explanation supposes the current state is WrExrespT
or RdExrespT and thus a single responding thread respT. If the state
is RdSh, reqT coordinates separately with every other thread.

Thread reqT initiates the coordination protocol by atomically
changing the lock to a special intermediate state, IntreqT, which
simplifies the protocol by ensuring that only one thread at a time
is trying to change the object’s lock’s state. (Another thread that
tries to acquire the same object’s lock must wait for reqT to fin-
ish coordination and change the lock’s state.) Then reqT sends a
request to respT, and respT responds at a safe point: a program
point that does not interrupt the atomicity of a lock acquire and
its corresponding access. Safe points must occur periodically; lan-
guage virtual machines typically already place yield points at every
method entry and loop back edge, e.g., to enable timely yielding
for stop-the-world garbage collection (GC). Furthermore, to avoid
deadlock, any blocking operation (e.g., waiting to start GC, acquire
a lock, or finish I/O) must act as a safe point. Depending on whether
respT is executing normally or performing a blocking operation,
reqT coordinates with respT either explicitly or implicitly.

Explicit protocol. If respT is not at a blocking safe point, reqT per-
forms the explicit protocol as shown in Figure 1(a). reqT requests
a response from respT by adding itself to respT’s request queue.
respT handles the request at a safe point, by performing conflict
detection and resolution (Sections 3.3–3.4) before responding to
reqT. Once reqT receives the response, it ensures that respT will

(a) (b)

Figure 2. A conflicting access is a necessary but insufficient condition for
a transactional conflict. Solid boxes are transactions; dashed boxes could be
either transactional or non-transactional.

“see” that the object’s lock’s state has changed. During the explicit
protocol, while reqT waits for a response, it enters a “blocked” state
so that it can act as a responding thread for other threads perform-
ing the implicit protocol, thus avoiding deadlock.
Implicit protocol. If respT is at a blocking safe point, reqT per-
forms the implicit protocol as shown in Figure 1(b). reqT atomi-
cally “places a hold” on respT by putting it in a “blocked and held”
state. Multiple threads can place a hold on respT, so the held state
includes a counter. After reqT performs conflict detection and res-
olution (Sections 3.3–3.4), it removes the hold by decrementing
respT’s held counter. If respT finishes its blocking operation, it will
wait for the held counter to reach zero before continuing execution,
allowing reqT to read and potentially modify respT’s state safely.

After either protocol completes, reqT changes the lock’s state to
the new state (WrExreqT or RdExreqT)—unless reqT aborts, in which
case the protocol reverts the lock to its old state (Section 3.4).
Active and passive threads. Note that depending on the protocol,
either the requesting or responding thread performs transactional
conflict detection and resolution. We refer to this thread as the
active thread. The other thread is the passive thread.

Active thread Passive thread
Explicit protocol Responding thread Requesting thread
Implicit protocol Requesting thread Responding thread

These assignments make sense as follows. In the explicit proto-
col, the requesting thread is stopped while the responding thread
responds, so the responding thread can safely act on both threads.
In the implicit protocol, the responding thread is blocked, so the
requesting thread must do all of the work.

3.3 Detecting Transactional Conflicts
Figure 2 shows how a conflicting access (a) may or (b) may not in-
dicate a transactional conflict, depending on whether the respond-
ing thread’s current transaction (if any) has accessed the object.

To detect whether the responding thread has accessed the object,
LarkTM maintains read/write sets. For an object locked in WrExT
or RdExT state, LarkTM maintains the last transaction of T to
access the object. For an object locked in RdSh state, LarkTM
tracks whether each thread’s current transaction has read the object.

When the active thread detects transactional conflicts, the co-
ordination protocol’s design ensures that the passive thread is
stopped, so the active thread can safely read the passive thread’s
state. For each responding thread respT, the active thread detects
transactional conflicts by using the read/write sets to identify the
last transaction (if any) of respT to access the conflicting object. If
this transaction is the same as respT’s current transaction (if any),
the active thread has identified a transactional conflict, so it triggers
conflict resolution.
Detecting conflicts at WrEx→RdEx. It is challenging to detect
conflicts precisely at a read by reqT to an object whose lock is

(a) (b)

Figure 3. (a) Thread reqT’s read triggers a state change from WrExrespT
to RdExreqT, at which point LarkTM declares a transactional conflict even
though respT’s transaction has only read, not written, o. This imprecision
is needed because otherwise (b) reqT might write o later, triggering a true
transactional conflict that would be difficult to detect at that point.

in WrExrespT state. Consider Figure 3(a). Object o’s lock is initially
in WrExrespT state. respT’s transaction reads but does not write o.
Then reqT performs a conflicting access, changing o’s lock’s state
to RdExreqT. In theory, conflict detection need not report a transac-
tional conflict. However, if reqT later writes to o, as in Figure 3(b),
upgrading the lock’s state to WrExreqT, conflict detection should re-
port a conflict with respT. It is hard to detect this conflict at reqT’s
write, since o’s prior access information has been lost (replaced by
reqT). The same challenge exists regardless of whether reqT exe-
cutes its read and write in or out of transactions.

One way to handle this case precisely is to transition a lock to
RdSh in cases like reqT’s read in Figures 3(a) and 3(b), when re-
spT’s transaction has read but not written the object. This precise
policy triggers a RdSh→WrExreqT transition at reqT’s write in Fig-
ure 3(b), detecting the transactional conflict.

However, the precise policy can hurt performance by leading
to more RdSh→WrEx transitions. LarkTM thus uses an imprecise
policy: for a conflicting read (i.e., a read to an object locked in an-
other thread’s WrEx state), the active thread checks whether respT’s
transaction has performed writes or reads. Thus, in Figures 3(a) and
3(b), LarkTM detects a transactional conflict at reqT’s conflicting
read. We find that LarkTM’s imprecise policy impacts transactional
aborts insignificantly compared to the precise policy, except for the
STAMP benchmark kmeans, for which the imprecise policy trig-
gers 30% fewer aborts—but kmeans has a low abort rate to begin
with, so its performance is unchanged. Overall, the precise policy
hurts performance by leading to more RdSh→WrEx transitions.

We emphasize that LarkTM’s imprecise policy for handling
conflicting reads does not in general lead to concurrent reads gener-
ating false transactional conflicts. Rather, false conflicts occur only
in cases like Figure 3(a), where o’s lock is in WrExrespT state be-
cause respT has previously written o, but respT’s current transac-
tion has only read, not written, o.

3.4 Resolving Transactional Conflicts
If an active thread detects a transactional conflict, it triggers con-
flict resolution, which resolves the conflict by aborting a transaction
or retrying a non-transactional access. A key feature of LarkTM is
that, by piggybacking on coordination, it can abort either conflict-
ing thread, enabling flexible conflict resolution.

Contention management. When resolving a conflict, the active
thread can abort either thread, providing flexibility for using var-
ious contention management policies [50]. LarkTM uses an age-
based contention management policy [30] that chooses to abort
whichever transaction or non-transactional access started more re-
cently. This policy provides not only livelock freedom but also star-
vation freedom: each thread’s transaction will eventually commit (a
repeatedly aborting transaction will eventually be the oldest) [50].

Aborting a thread. The aborting thread abortingT chosen by con-
tention management may be executing a transaction or a non-
transactional access’s lock acquire. “Aborting” a non-transactional
access means retrying its preceding lock acquire.

To ensure that only one thread at a time tries to roll back abort-
ingT’s stores, the active thread first acquires a lock for abortingT.
Note that another thread otherT can initiate implicit coordination
with abortingT while abortingT’s stores are being rolled back. If
otherT triggers coordination in order to access an object that is part
of abortingT’s speculative state, otherT will find the object locked
in WrExabortingT state, triggering conflict resolution, which will wait
on abortingT’s lock until rollback finishes.

In work tangentially related to piggybacking conflict resolution
on coordination, Harris and Fraser present a technique that allows
a thread to revoke a second thread’s lock without blocking [26].
Handling the conflicting object. When conflict resolution finishes,
the conflicting object’s lock is still in the intermediate state IntreqT.
If abortingT is respT, then reqT changes the lock’s state to WrExreqT
or RdExreqT. If abortingT is reqT, then the active thread reverts
the lock’s state back to its original state (WrExrespT, RdExrespT,
or RdSh), after rolling back speculative stores. This policy makes
sense because reqT is aborting, but respT will continue executing.
(The lock cannot stay in the IntreqT state since that would block
other threads from ever accessing it.)
Retrying transactions and non-transactional accesses. After the
active thread rolls back the aborting thread’s speculative stores,
and the lock state change completes or reverts, both threads may
continue. The aborting thread sees that it should abort, and it retries
its current transaction or non-transactional access.

3.5 LarkTM’s Instrumentation
The following pseudocode shows the instrumentation that LarkTM
adds to every memory access to acquire a per-object reader–writer
lock and perform other STM operations. At a program write:

1 if (o. state != WrExT) { // fast -path check
2 // Acquiring lock requires changing its state ;
3 // conflicting acquire → conflict detection
4 slowPath(o);
5 }
6 // Update read/write set (if in a transaction) :
7 o. lastAccessingTx = T.currentTx;
8 // Update undo log (if in a transaction) :
9 T.undoLog.add(&o.f);

10 o. f = ...; // program write

At a program read:

11 if (o. state != WrExT && o.state != RdExT) { // fast -path
12 if (o. state != RdSh) { // check
13 // Acquiring lock requires changing its state ;
14 // conflicting acquire → conflict detection
15 slowPath(o);
16 }
17 load fence ; // ensure RdSh visibility
18 }
19 // Update read/write set (if in a transaction) :
20 if (o. state == RdSh)
21 T.sharedReads.add(o);
22 else
23 o. lastAccessingTx = T.currentTx;
24 ... = o.f ; // program read

The fast-path check corresponds to the first three rows in Table 1. If
the fast-path check fails, acquiring the lock requires a state change.
If the state change is conflicting, it triggers the coordination proto-
col and transactional conflict detection. After line 5 (for writes) or
18 (for reads), the instrumentation has acquired the lock in a state
sufficient for the pending access. For transactional accesses only,

NOrec IntelSTM LarkTM-O LarkTM-S
Write concurrency control Lazy global seqlock Eager per-object lock Eager per-object biased reader–writer lock IntelSTM–LarkTM-O hybrid
Read concurrency control Lazy value validation Lazy version validation Eager per-object biased reader–writer lock IntelSTM–LarkTM-O hybrid
Instrumented accesses All accesses Non-redundant accesses Non-redundant accesses Non-redundant accesses
Progress guarantee Livelock free None Livelock and starvation free Livelock and starvation free∗
Semantics SLA Strong atomicity Strong atomicity Strong atomicity

Table 2. Comparison of the features and properties of NOrec [15], IntelSTM [49], LarkTM-O, and LarkTM-S. SLA is single global lock atomicity
(Section 2.4). ∗LarkTM-S guarantees progress only if it forces a repeatedly aborting transaction to use fully eager concurrency control.

the instrumentation adds the object access to the transaction’s read-
/write set. For an object locked in WrEx or RdEx, each object keeps
track of its last accessing transaction; for an object locked in RdSh,
each thread tracks the objects it has read (Section 3.3). Then, for
transactional writes only, the instrumentation records the memory
location’s old value in an undo log. Finally, the access proceeds.

LarkTM naturally provides strong atomicity by acquiring its
locks at non-transactional as well as transactional accesses. While
one could implement weakly atomic LarkTM by eliding non-
transactional instrumentation, the semantics would be weaker than
SLA (Section 2.4), e.g., the resulting STM would not be privatiza-
tion or publication safe.

Redundant instrumentation. LarkTM can avoid statically redun-
dant instrumentation to the same object in the same transaction,
which can be identified by intraprocedural compile-time dataflow
analysis [6]. Instrumentation at a memory access is redundant if it
is definitely preceded by a memory access that is at least as “strong”
(a write is stronger than a read). Outside of transactions, Lark-
TM can avoid instrumenting redundant lock acquires in regions
bounded by safe points, since safe points interrupt atomicity [6].

3.6 Scaling with High-Conflict Workloads
As described so far, LarkTM minimizes overhead by making non-
conflicting lock acquires as fast as possible. However, conflicting
lock acquires—which can significantly outnumber actual transac-
tional conflicts—require expensive coordination. To address this
challenge, we introduce LarkTM-S, which targets better scalability.
We call the “pure” configuration described so far LarkTM-O since
it minimizes overhead.

A contended lock state. To support LarkTM-S, we add a new
contended lock state to LarkTM’s existing WrExT, RdExT, and
RdSh states. Our current design uses IntelSTM’s concurrency con-
trol [49] (Section 2.2) for the contended state. IntelSTM and Lark-
TM are fairly compatible because they both use eager concurrency
control for writes. Following IntelSTM, LarkTM-S uses unbiased
locks for writes to objects in the contended state, incurring an
atomic operation for every non-transactional write and every trans-
action’s first write to an object, but never requiring coordination.
For reads to an object locked in the contended state, LarkTM-S
uses lazy validation of the object’s version, which is updated each
time an object’s write lock is acquired.

Our current design supports changing an object’s lock to the
contended state at allocation time or as the result of a conflicting
lock acquire. It is safe to change a lock to contended state in the
middle of a transaction because coordination resolves any conflict,
guaranteeing all transactions are consistent up to that point.

Profile-guided policy. LarkTM-S decides which objects’ locks to
change to the contended state based on profiling lock state changes.
It uses two profile-based policies. The first policy is object based:
if an object’s lock triggers “enough” conflicting lock acquires, the
policy puts the lock into the contended state. This policy counts
each lock’s conflicts at run time; if a count exceeds a threshold,
the lock changes to contended state. (We would rather compute an
object’s ratio of conflicts to all accesses, but counting all accesses
at run time would be expensive.)

The object-based policy works well except when many objects
trigger few conflicts each. The second, type-based policy addresses
this case by identifying object types that contribute to many con-
flicts. The type-based policy decides whether all objects of a given
type (i.e., Java class) should have their locks put in the contended
state at allocation time. For each type, the policy decides to put
its locks into the contended state if, across all accesses to objects
of the type, the ratio of conflicting to all accesses exceeds a thresh-
old. Our implementation uses offline profiling; a production-quality
implementation could make use of online profiling via dynamic re-
compilation. Grouping by type enables allocating objects locked in
contended state, but the grouping may be too coarse grained, con-
flating distinct object behaviors.

Prior work has also adaptively used different kinds of locking
for high-conflict objects, based on profiling [9, 53].

Semantics and progress. Since LarkTM-S validates reads lazily,
it permits so-called zombie transactions [27]. Zombie transactions
can throw runtime exceptions or get stuck in infinite loops that
would be impossible in any unserializable execution. Each transac-
tion must validate its reads before throwing any exception, as well
as periodically in loops, to handle erroneous behavior that would
be impossible in a serializable execution.

Since our design targets managed languages that provide mem-
ory and type safety, zombie transactions cannot cause memory cor-
ruption or other arbitrary behaviors [13, 18, 36]. A design for un-
managed languages (e.g., C/C++) would need to check for unseri-
alizable behavior more aggressively [13].

Like IntelSTM and other mixed-mode STMs, LarkTM-S can
suffer livelock, since any transaction that fails read validation must
abort (Section 2.3). Standard techniques such as exponential back-
off [30, 50] help to alleviate this problem. We note that LarkTM-S
can in fact guarantee livelock and starvation freedom by forcing a
repeatedly aborting transaction to fall back to using entirely eager
mechanisms (as though it were executed by LarkTM-O). We have
not yet incorporated this feature into our design or implementation.

3.7 Comparing STMs
To enhance our evaluation, we implement and compare against two
STMs from prior work: NOrec [15] and IntelSTM (the strongly
atomic version of McRT-STM) [45, 49] (Section 2.2). NOrec is
generally considered to be a state-of-the-art STM (e.g., recent work
compares quantitatively against NOrec [8, 29, 55]) that provides
relatively low single-thread overhead and (for many workloads)
good scalability. Although not considered to be one of the best-
performing STMs, IntelSTM is perhaps the highest performance
STM from prior work that supports strong atomicity.

Table 2 compares features and properties of our STMs and
prior work’s STMs. LarkTM uses biased reader–writer locks for
concurrency control to achieve low overhead. NOrec and IntelSTM
use lazy validation for reads in order to avoid the overhead of
locking at reads, but as a result they incur other overheads such
as logging reads (both), looking up reads in the write set (NOrec),
and validating reads (IntelSTM).

IntelSTM, LarkTM-O, and LarkTM-S can avoid redundant con-
currency control instrumentation (Section 3.5) because they use
object-level locks and/or version validation. NOrec must instru-

ment all reads fully since it validates reads using values; NOrec
performs only logging (no concurrency control) at writes. None of
the STMs can avoid logging at redundant writes because we have
implemented an object-granularity dataflow analysis (Section 4).

NOrec provides livelock freedom (i.e., some thread’s transac-
tion eventually commits), and IntelSTM makes no progress guar-
antees. LarkTM-O provides starvation freedom (every transaction
eventually commits) by resolving conflicts eagerly and supporting
aborting either transaction. LarkTM-S can provide starvation free-
dom if it uses (LarkTM-O’s) fully eager concurrency control for a
repeatedly aborting transaction.

NOrec provides weak atomicity (SLA; Section 2.4); a strongly
atomic version would need to acquire a global lock at every non-
transactional store. The other STMs provide strong atomicity by
instrumenting each non-transactional access like a tiny transaction.

4. Implementation
We have implemented LarkTM-O and LarkTM-S, and NOrec and
IntelSTM, in Jikes RVM 3.1.3, a high-performance Java virtual
machine [4]. Our implementations are available on the Jikes RVM
Research Archive (http://jikesrvm.org/Research+Archive).

Our implementations share features as much as possible, e.g.,
LarkTM-S uses our IntelSTM code to handle the contended state.
Our LarkTM-O and LarkTM-S implementations extend the per-
object biased reader–writer locks from the publicly available Octet
implementation [6].
Programming model. While our design assumes the program-
mer only needs to add atomic {} blocks, our implementation re-
quires manual transformation of atomic blocks to support retry and
to back up and restore local variables. These transformations are
straightforward, and a compiler could perform them automatically.
Instrumentation. Jikes RVM’s dynamic compilers insert Lark-
TM’s instrumentation at all accesses in application and Java li-
brary methods. A call site invokes a different compiled version of
a method depending on whether it is called from a transactional
or non-transactional context. The compilers thus compile two ver-
sions of each method called from both contexts.

We modify Jikes RVM’s dynamic optimizing compiler, which
optimizes hot methods, to perform intraprocedural, flow-sensitive
dataflow analysis that identifies redundant accesses to the same ob-
ject (Section 3.5). This analysis is at the object (not field or ar-
ray element) granularity, so it cannot eliminate the instrumentation
at writes that updates the undo log (T.undoLog.add(&o.f) in Sec-
tion 3.5). IntelSTM, LarkTM-O, and LarkTM-S use this analysis to
identify and eliminate redundant instrumentation in transactions.

In non-transactional code, LarkTM-O eliminates redundant in-
strumentation within regions free of safe points (e.g., method calls,
loop headers, and object allocations), since LarkTM’s per-object
biased locks ensure atomicity interrupted only at safe points. Since
any lock acquire can act as a safe point, LarkTM-O adds instru-
mentation in non-transactional code that executes after a lock state
change and reacquires any lock(s) already acquired in the cur-
rent safe-point-free region, as identified by the redundant instru-
mentation analysis. Eliminating redundant instrumentation in non-
transactional code would not guarantee soundness for IntelSTM
since it does not guarantee atomicity between safe points. However,
recent work shows that statically bounded regions can be trans-
formed to be idempotent with modest overhead [16, 48], suggesting
an efficient route for eliminating redundant instrumentation. In an
effort to make the comparison fair, IntelSTM eliminates instrumen-
tation that is redundant within safe-point-free regions. LarkTM-O
and IntelSTM thus use the same redundant instrumentation analy-
sis, as does the hybrid of these two STMs, LarkTM-S.
NOrec. The original NOrec design adds instrumentation after ev-
ery read, which performs read validation if the global sequence lock

has changed since the last snapshot [15]. This check is needed for
unmanaged languages in order to avoid violating memory and type
safety. Our implementation of NOrec targets managed languages,
so it safely avoids this check, improving scalability (we have found)
by avoiding unnecessary read validation. Our NOrec implementa-
tion can thus execute zombie transactions.
Zombie transactions. Our implementations of NOrec, IntelSTM,
and LarkTM-S can execute zombie transactions because they vali-
date reads lazily (Section 3.6). The implementations must perform
read validation prior to commit in a few cases. (NOrec only ever
needs to perform read validation if the global sequence lock has
changed since the last snapshot [15].) The implementations per-
form read validation before throwing any runtime exception from
a transaction. The implementations mostly avoid periodic valida-
tion since infinite loops in zombie transactions mostly do not occur,
except that NOrec has transactions that get stuck in infinite loops
for three out of eight STAMP benchmarks. (NOrec presumably has
more zombie behavior than IntelSTM since NOrec uses lazy con-
currency control for both reads and writes.) For these three bench-
marks only, we use a configuration of NOrec that validates reads
(only if the global sequence lock has been updated) every 131,072
reads, which adds minimal overhead.
Conflict resolution. An aborting transaction retries using the VM’s
existing runtime exception mechanism. Since retrying from a safe
point could leave the VM in an inconsistent state, the implementa-
tion defers retry until the next access or attempt to commit.
Contention management. To implement LarkTM’s age-based
contention management, we use IA-32’s cycle counter (TSC) for
timestamps. Timestamps thus do not reflect exact global ordering
(providing exact global ordering could be a scalability bottleneck),
but they are sufficient for ensuring progress.

5. Evaluation
This section evaluates the run-time overhead and scalability of
LarkTM-O and LarkTM-S, compared with IntelSTM and NOrec.

5.1 Methodology
Benchmarks. To evaluate STM overhead and scalability, we use
the transactional STAMP benchmarks [10]. Designed to be more
representative of real-world behavior and more inclusive of diverse
execution scenarios than microbenchmarks, STAMP continues to
be used in recent work (e.g., [8, 15, 20, 29]). We use a version of
STAMP ported to Java by other researchers [17, 34]. We omit a
few ported STAMP benchmarks because they run incorrectly, even
when running single-threaded without STM on a commercial JVM.
Six benchmarks run correctly, including two with both low- and
high-contention workloads, for a total of eight benchmarks. Our
experiments run the large workload size for all benchmarks, with
the following exceptions. We run kmeans with twice the standard
large workload size, since otherwise load balancing issues thwart
scaling significantly. We use a workload size between the medium
and large sizes for labyrinth3d and ssca2 since the large workload
exhausts virtual memory on our 32-bit implementation (Jikes RVM
currently targets IA-32 but not x86-64).

Although the C version of STAMP includes hand-instrumented
transactional loads and stores, the STMs do not use this in-
formation. They instead instrument all transactional and non-
transactional accesses, except those that are statically redundant
or to a few known immutable types (e.g., String).
Deuce. For comparison purposes, we evaluate the publicly avail-
able Deuce implementation [34] of the high-performance TL2 al-
gorithm [18]. Deuce’s concurrency control is at field and array el-
ement granularity, which avoids false object-level conflicts but can
add instrumentation overhead. We execute Deuce with the Open-
JDK JVM since Jikes RVM does not execute Deuce correctly. Eval-

16 32 48 64

Threads

0

1

2

3

4

S
p
ee
d
u
p

Deuce

NOrec

IntelSTM

LarkTM-O

LarkTM-S

(a) kmeans low

16 32 48 64

Threads

0

1

2

3

4

(b) vacation low

Figure 4. Speedup of STMs over non-STM single-thread execution for 1–
64 threads for two representative programs.

uating Deuce helps to determine whether overhead and scalability
issues are specific to our STM implementations in Jikes RVM.

Platform and scalability. Experiments execute on an AMD Opteron
6272 system running Linux 2.6.32. It has eight 8-core processors
(64 cores total) that communicate via a NUMA interconnect.

Performance shows little or no improvement beyond 8 threads,
and it often degrades (anti-scales). This limitation is not unique
to LarkTM or even Jikes RVM: IntelSTM and NOrec, as well
as Deuce executed by OpenJDK JVM, experience the same ef-
fect. The poor scalability above 8 threads is therefore due to some
combination of the benchmarks and platform. The scalability of
the STAMP benchmarks is limited [60], e.g., by load imbalance
and communication costs. Communication between threads exe-
cuting on different 8-core processors is more expensive than intra-
processor communication.

Figure 4 shows the scalability of two representative programs
for 1–64 threads. The STM configurations generally anti-scale
for 16–64 threads for kmeans low, (which is representative of
kmeans high, ssca2, and labyrinth3d, and intruder). For vacation low
(representative of vacation high and genome), scalability is fairly
flat for 16–64 threads, with some anti-scaling.

Across all STMs we evaluate, performance is not enhanced sig-
nificantly by using more than 8 threads, so our evaluation focuses
on 1–8 threads (with execution limited to one 8-core processor).

Appendix A repeats our experiments on an Intel Xeon platform.

Experimental setup. We build a high-performance configuration
of Jikes RVM that adaptively optimizes the application as it runs.
Each performance result is the median of 30 trials, to minimize the
effects of any machine noise. We also show the mean, as the center
of 95% confidence intervals.

Optimizations. All of our implemented STMs except NOrec per-
form concurrency control at object granularity, which can trig-
ger false conflicts, particularly for large arrays divided up among
threads. We refactor some STAMP benchmarks to divide large
arrays into multiple smaller arrays; a production implementation
could instead provide flexible metadata granularity. In addition,
Jikes RVM’s optimizing compiler does not aggressively perform
optimizations—such as common subexpression elimination and
loop unrolling and peeling—that help identify redundant LarkTM
instrumentation, so we refactor four programs by applying these
optimizations manually. For a fair evaluation, all STMs and the
non-STM single-thread baseline execute the refactored programs.

Profile-guided decisions. LarkTM-S decides whether to change
objects’ locks to the contended state based on profiling (Sec-
tion 3.6). In our experiments, LarkTM-S changes an object’s lock
to contended state after it performs 256 conflicting accesses. Sensi-
tivity is low: varying the threshold from 1 to 1024 has little impact,
except for kmeans, which performs worse for thresholds ≤128.

LarkTM-S uses offline profiling to select types (Java classes)
whose instances should be locked into contended state at allocation

time. The policy selects types whose ratio of conflicting to non-
conflicting accesses is greater than 0.01, excluding common types
such as int arrays and Object. It limits the selected types so that
at most 25% of the execution’s accesses are to contended objects,
since otherwise the execution might as well use IntelSTM instead
of LarkTM-S. Since profiling and performance runs use the same
inputs, they represent a best case for online profiling.

5.2 Execution Characteristics
Table 3 reports instrumented accesses executed by the four im-
plemented STMs during single-thread execution. (Each statistic
reported in the paper is the arithmetic mean of 15 trials.) The
table shows that while reads outnumber writes, writes are not
uncommon. Several programs spend almost all of their time in
transactions, while a few spend significant time executing non-
transactional accesses. NOrec instruments more transactional ac-
cesses than the other STMs because it cannot exclude instrumen-
tation from redundant accesses (Section 3.5). Transactional writes
does not count the undo log instrumentation that IntelSTM, Lark-
TM-O, and LarkTM-S add at every transactional write (Section 4).

Table 4 reports lock state transitions for LarkTM-O and Lark-
TM-S running STAMP with 8 application threads. The Same state
column reports how many instrumented accesses require no lock
state change, meaning they take the fast path. For LarkTM-O, more
than 90% of accesses fall into this category for every program.
Conflicting lock acquires require coordination with other thread(s)
in order to change the lock’s state. Although LarkTM-O achieves a
relatively low fraction of lock acquires that are conflicting—always
less than 5%—coordination costs affect scalability significantly.

LarkTM-S successfully avoids many conflicting transitions by
using the contended state, often reducing conflicting lock acquires
by an order of magnitude or more. At the same time, many same-
state accesses become contended-state accesses. More than 10%
of accesses are to contended objects in four programs (intruder,
genome, vacation low, and vacation high).

Table 5 counts transactions committed and aborted for the four
STMs implemented in Jikes RVM, running STAMP with 8 threads.
Different conflict resolution and contention management policies
lead to different abort rates for the STMs. Several programs have
a trivial abort rate; others abort roughly 10% of their transactions.
LarkTM-O and LarkTM-S have different abort rates because Lark-
TM-S uses IntelSTM’s conflict resolution and contention manage-
ment for contended accesses. Although we might expect Intel-
STM’s suboptimal contention management to lead to more aborts,
the implementations are not comparable: LarkTM always resolves
conflicts by aborting a thread, while IntelSTM waits for some time
(rather than aborting immediately) for a contended lock to become
available. NOrec often has the lowest abort rate, mainly (we be-
lieve) because it performs conflict detection at field and array ele-
ment granularity, so its transactions do not abort due to false shar-
ing. In contrast, the other STMs detect conflicts at object granu-
larity. As our performance results show, abort rates alone do not
predict scalability, which is influenced strongly by other factors
such as LarkTM’s coordination protocol and NOrec’s global lock.

5.3 Performance Results
This section compares the performance of the STMs with each
other and with uninstrumented, single-thread execution.
Single-thread overhead. Transactional programs execute multiple
parallel threads in order to achieve high performance. Nonetheless,
single-thread overhead is important because it is the starting point
for scaling performance with more threads. Existing STMs have
struggled to achieve good performance largely because of high
instrumentation overhead (Section 2.2) [11, 59].

Figure 5 shows the single-thread overhead (i.e., instrumenta-
tion overhead) of the five STMs, compared to single-thread perfor-

NOrec IntelSTM, LarkTM-O, and LarkTM-S
Total Transactional Total Transactional Non-transactional

accesses reads writes accesses reads writes reads writes
kmeans low 1.0×109 7.0×108 3.5×108 7.2×109 3.4×107 1.3×107 7.1×109 2.7×107

kmeans high 1.4×109 9.2×108 4.6×108 7.5×109 2.4×107 9.1×106 7.4×109 4.6×107

ssca2 4.6×107 3.5×107 1.2×107 4.5×109 3.4×107 1.2×107 3.5×109 4.2×108

intruder 1.5×109 1.4×109 1.0×108 8.8×108 7.2×108 6.0×107 5.4×107 5.3×104

labyrinth3d 7.2×108 6.8×108 4.6×107 4.1×108 3.5×108 4.6×107 1.9×103 5.4×102

genome 1.7×109 1.7×109 6.7×107 5.3×108 2.9×108 6.9×105 2.1×108 2.1×106

vacation low 1.4×109 1.3×109 7.8×107 7.9×108 7.2×108 2.9×107 2.0×103 1.3×107

vacation high 1.9×109 1.8×109 1.0×108 1.1×109 1.0×109 4.0×107 1.1×104 2.1×107

Table 3. Accesses instrumented by NOrec, IntelSTM, LarkTM-O, and LarkTM-S during single-thread execution.

LarkTM-O LarkTM-S
Same state Conflicting Same state Conflicting Contended read Contended write

kmeans low 6.3×109 (99.60%) 1.3×107 (0.20%) 6.2×109 (99.49%) 8.7×104 (0.0014%) 1.6×107 (0.25%) 1.6×107 (0.25%)
kmeans high 7.6×109 (99.69%) 1.2×107 (0.16%) 7.6×109 (99.65%) 8.2×104 (0.0011%) 1.3×107 (0.17%) 1.3×107 (0.17%)
ssca2 6.5×109 (99.71%) 1.2×107 (0.19%) 5.3×109 (98.0%) 5.8×106 (0.11%) 9.0×107 (1.7%) 9.2×106 (0.18%)
intruder 1.4×109 (91.6%) 6.3×107 (4.3%) 1.1×109 (76%) 3.9×107 (2.7%) 2.6×108 (11%) 2.0×107 (1.4%)
labyrinth3d 4.6×108 (99.9910%) 2.2×104 (0.0048%) 4.5×108 (99.997%) 2.2×104 (0.0048%) 9.5×102 (0.00021%) 1.3×102 (0.000028%)
genome 6.8×108 (97.1%) 1.8×107 (2.6%) 4.5×108 (79%) 1.2×105 (0.021%) 8.2×107 (14%) 2.1×106 (0.37%)
vacation low 7.8×108 (94.3%) 2.7×107 (3.3%) 7.2×108 (81%) 2.4×106 (0.27%) 1.4×108 (9.9%) 1.7×107 (1.9%)
vacation high 1.1×109 (95.0%) 3.2×107 (2.8%) 9.7×108 (78%) 2.5×106 (0.20%) 2.5×108 (13%) 2.1×107 (1.7%)

Table 4. Lock acquisitions when running LarkTM-O and LarkTM-S. Same state accesses do not change the lock’s state. Conflicting accesses trigger the
coordination protocol and conflict detection. Contended state accesses use IntelSTM’s concurrency control. Percentages are out of total instrumented accesses
(unaccounted-for percentages are for upgrading lock transitions). Each percentage x is rounded so x and 100% − x have at least two significant digits.

Transactions Transactions aborted at least once
committed NOrec IntelSTM LarkTM-O LarkTM-S

kmeans low 6.2×106 4.4% 0.2% 1.8% 0.2%
kmeans high 5.1×106 3.7% 0.3% 2.9% 0.4%
ssca2 5.8×106 < 0.1% 4.1% 4.7% 2.8%
intruder 2.4×107 7.5% 24.2% 35.1% 7.9%
labyrinth3d 2.9×102 3.8% 15.3% 0.3% < 0.1%
genome 2.5×106 < 0.1% 0.1% 0.2% < 0.1%
vacation low 4.2×106 < 0.1% 0.3% 8.4% 0.1%
vacation high 4.2×106 < 0.1% 0.5% 7.6% < 0.1%

Table 5. Transactions committed and aborted at least once for four STMs.

Deuce NOrec IntelSTM LarkTM-O LarkTM-S

kmeans_low

kmeans_high

ssca2
intruder

labyrinth3d

genome

vacation_low

vacation_high

geomean

0

50

100

150

200

250

300

O
v

e
r
h

e
a

d
 (

%
)

450 460 1150
610
2870

1250 480 540 490

Figure 5. Single-thread overhead (over non-STM execution) added by the
five STMs. Lower is better.

mance on Jikes RVM without STM, except for Deuce, which is nor-
malized to single-thread performance on OpenJDK JVM. Deuce
slows programs by almost 6X on average relative to baseline Open-
JDK JVM, which we find is 33% faster than Jikes RVM on average.

Our NOrec and IntelSTM implementations slow single-thread
execution significantly—by 2.9 and 3.3X on average—despite tar-
geting low overhead. NOrec in particular aims for low overhead
and reports being one of the lowest-overhead STMs [15]. IntelSTM

targets low overhead by combining eager concurrency control for
writes with lazy read validation [49]. Yet they still incur signifi-
cant costs: NOrec buffers each write; and it looks up each read in
the write set and (if not found) logs the read in the read valida-
tion log. IntelSTM performs atomic operations at many writes, and
it logs and later validates reads. LarkTM-O yields the lowest in-
strumentation overhead (1.40X on average), since it minimizes in-
strumentation complexity at non-conflicting accesses. LarkTM-S’s
single-thread slowdown is 1.73X; its instrumentation uses atomic
operations and read validation for accesses to objects with locks in
contended state. In single-thread execution, LarkTM-S puts objects
into contended state based on offline type-based profiling only.

An outlier is ssca2, for which NOrec performs the best, since a
high fraction of its accesses are non-transactional (Table 3). While
kmeans low and kmeans high also have many non-transactional ac-
cesses, the overhead of its transactional accesses, which execute in
relatively short transactions, is dominant.

IntelSTM’s very high overhead on labyrinth3d is related to its
long transactions, which lead to large read and write sets. Intel-
STM’s algorithm has to validate some read set entries by linearly
searching the (duplicate-free) write sets, adding substantial over-
head for labyrinth3d because its write sets are often large. Intel-
STM could avoid this linear search by incurring more overhead in
the common case, as in a related design [28]. If we remove the
validation check, IntelSTM still slows labyrinth3d’s single-thread
execution by 4X.

NOrec also adds high overhead for labyrinth3d. We find that
whenever the instrumentation at a read looks up the value in the
write set, the average write set size is about 64,000 elements. In
contrast, the average write set size is at most 16 elements for any
other program. Although our NOrec implementation uses a hash
table for the write set, it is plausible that larger sizes lead to more-
expensive lookups (e.g., more operations and cache pressure).

Scalability. Figure 6 shows speedups for the STMs over non-
STM single-thread execution for 1–8 threads. Each single-thread
speedup is simply the inverse of the overhead from Figure 5.

Deuce, NOrec, and IntelSTM scale reasonably well overall, but
they start from high single-thread overhead, limiting their overall

Deuce NOrec IntelSTM LarkTM-O LarkTM-S

2 4 6 8

0

1

2

3

4

S
p
ee
d
u
p

(a) kmeans low

2 4 6 8

0

1

2

3

4

(b) kmeans high

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) ssca2

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

S
p
ee
d
u
p

(d) intruder

2 4 6 8

0.0

0.5

1.0

1.5

(e) labyrinth3d

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(f) genome

2 4 6 8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

S
p
ee
d
u
p

(g) vacation low

2 4 6 8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

(h) vacation high

2 4 6 8

Threads

0.0

0.5

1.0

1.5

(i) geomean

Figure 6. Performance of Deuce, NOrec, IntelSTM, LarkTM-O, and LarkTM-S, normalized to non-STM single-thread execution (also indicated with a
horizontal dashed line). The x-axis is the number of application threads. Higher is better.

best performance (usually at 8 threads). LarkTM-O has the low-
est single-thread overhead on average, yet it scales poorly for sev-
eral programs that have a high fraction of accesses that trigger
conflicting transitions—particularly genome and intruder. Execu-
tion time increases for vacation low and vacation high from 1 to
2 threads because of the cost of coordination caused by conflict-
ing lock acquires, then decreases after adding more threads and
gaining the benefits of parallelism. LarkTM-S achieves scalability
approaching IntelSTM’s scalability because LarkTM-S effectively
eliminates most conflicting lock acquires. Starting at two threads,
LarkTM-S provides the best average performance by avoiding most
of LarkTM-O’s coordination costs while retaining most of its low-
cost instrumentation benefits.

Just as prior STMs have struggled to outperform single-thread
execution [2, 11, 20, 59], Deuce, NOrec, and IntelSTM are unable,
on average, to outperform non-STM single-thread execution. In
contrast, LarkTM-O and LarkTM-S are 1.07X and 1.69X faster,
respectively, than (non-STM) single-thread execution.

Figure 6(i) shows the geomean of speedups across benchmarks.
The following table summarizes how much faster LarkTM-O and
LarkTM-S are than other STMs:

Deuce NOrec NOrec− IntelSTM IntelSTM−

LarkTM-O 3.54X 1.09X 0.93X 1.22X 0.87X
LarkTM-S 5.58X 1.72X 1.47X 1.93X 1.37X

The numbers represent the ratio of LarkTM-O or LarkTM-S’s
speedup to each other STM’s speedup, all running 8 threads.
NOrec− and IntelSTM− are geomeans without labyrinth3d.

Summary. Across all programs, LarkTM-O provides the lowest
single-thread overhead, NOrec and IntelSTM typically scale best,
and LarkTM-S does well at both.

6. Conclusion
LarkTM’s novel design provides low overhead, progress guaran-
tees, and strong semantics. LarkTM-O provides the lowest over-
head, and the best performance for low-contention workloads.
LarkTM-S uses mixed concurrency control, yielding the best over-
all performance, outperforming existing high-performance STMs.

Acknowledgments
We thank our shepherd, Alexander Matveev, for helping us improve
the presentation and evaluation; and the anonymous paper and
artifact evaluation reviewers for thorough feedback. We thank Tim
Harris, Michael Scott, and Adam Welc for valuable feedback on
the text and for other suggestions; Hans Boehm, Brian Demsky,
Milind Kulkarni, and Tatiana Shpeisman for useful discussions;
and Swarnendu Biswas, Meisam Fathi Salmi, and Aritra Sengupta
for various help. Thanks to Brian Demsky’s group and the Deuce
authors for porting STAMP to Java and making it available to us.

A. Results on a Different Platform
We have repeated the paper’s performance experiments on a a
system with four Intel Xeon E5-4620 8-core processors (32 cores
total) running Linux 2.6.32. This platform supports NUMA, but we
disable it for greater contrast with the AMD platform.

Deuce NOrec IntelSTM LarkTM-O LarkTM-S

2 4 6 8

0

1

2

3

S
p
ee
d
u
p

(a) kmeans low

2 4 6 8

0

1

2

3

(b) kmeans high

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

(c) ssca2

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
ee
d
u
p

(d) intruder

2 4 6 8

0.0

0.4

0.8

1.2

(e) labyrinth3d

2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(f) genome

2 4 6 8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
ee
d
u
p

(g) vacation low

2 4 6 8

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(h) vacation high

2 4 6 8

Threads

0.0

0.5

1.0

1.5

(i) geomean

Figure 7. STM performance for 1–8 threads on an Intel Xeon platform. Otherwise same as Figure 6.

8 16 24 32

Threads

0

1

2

3

S
p
ee
d
u
p

Deuce

NOrec

IntelSTM

LarkTM-O

LarkTM-S

(a) kmeans low

8 16 24 32

Threads

0

1

2

3

4

5

(b) vacation low

Figure 8. STM performance for 1–32 threads on an Intel Xeon platform.
Otherwise same as Figure 4.

Figure 7 shows speedups for each STAMP benchmark and the
geomean. Single-thread overhead and scalability are similar across
both platforms. As on the AMD platform, NOrec, IntelSTM, and
LarkTM-O have similar performance on average on the Intel plat-
form, although LarkTM-O performs slightly worse in comparison
on the Intel platform. On both platforms, LarkTM-S significantly
outperforms the other STMs on average.

Figure 8 shows scalability for 1–32 threads for the same two
representative STAMP benchmarks as Figure 4. Although on vaca-
tion low the STMs may seem to scale better on the Intel machine,
we note that Figure 8 evaluates only 1–32 threads.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of Trans-

actional Memory and Automatic Mutual Exclusion. In POPL, pages

63–74, 2008.
[2] M. Abadi, T. Harris, and M. Mehrara. Transactional Memory with

Strong Atomicity Using Off-the-Shelf Memory Protection Hardware.
In PPoPP, pages 185–196, 2009.

[3] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking
Parallel Languages and Hardware. CACM, 53:90–101, 2010.

[4] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine Project: Building an Open-Source Research Commu-
nity. IBM Systems Journal, 44:399–417, 2005.

[5] L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware Mem-
ory Protection to Build a High-Performance, Strongly-Atomic Hybrid
Transactional Memory. In ISCA, pages 115–126, 2008.

[6] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi,
S. Biswas, A. Sengupta, and J. Huang. Octet: Capturing and Con-
trolling Cross-Thread Dependences Efficiently. In OOPSLA, pages
693–712, 2013.

[7] N. G. Bronson, C. Kozyrakis, and K. Olukotun. Feedback-Directed
Barrier Optimization in a Strongly Isolated STM. In POPL, pages
213–225, 2009.

[8] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy.
Invyswell: A Hybrid Transactional Memory for Haswell’s Restricted
Transactional Memory. In PACT, pages 187–200, 2014.

[9] M. Cao, M. Zhang, and M. D. Bond. Drinking from Both Glasses:
Adaptively Combining Pessimistic and Optimistic Synchronization
for Efficient Parallel Runtime Support. In WoDet, 2014.

[10] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford Transactional Applications for Multi-Processing. In IISWC,
2008.

[11] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software Transactional Memory: Why Is It Only a
Research Toy? CACM, 51(11):40–46, 2008.

[12] L. Dalessandro and M. L. Scott. Strong Isolation is a Weak Idea. In
TRANSACT, 2009.

[13] L. Dalessandro and M. L. Scott. Sandboxing Transactional Memory.
In PACT, pages 171–180, 2012.

[14] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as the
Foundation of a Memory Consistency Model. In DISC, pages 20–34,
2010.

[15] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In PPoPP, pages 67–78,
2010.

[16] M. de Kruijf and K. Sankaralingam. Idempotent Code Generation:
Implementation, Analysis, and Evaluation. In CGO, pages 1–12, 2013.

[17] B. Demsky and A. Dash. Evaluating Contention Management Using
Discrete Event Simulation. In TRANSACT, 2010.

[18] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In DISC,
pages 194–208, 2006.

[19] D. Dice and N. Shavit. TLRW: Return of the Read-Write Lock. In
SPAA, pages 284–293, 2010.

[20] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM
Can Be More than a Research Toy. CACM, 54:70–77, 2011.

[21] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching Transac-
tional Memory. In PLDI, pages 155–165, 2009.

[22] J. E. Gottschlich, M. Vachharajani, and J. G. Siek. An Efficient
Software Transactional Memory Using Commit-Time Invalidation. In
CGO, pages 101–110, 2010.

[23] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Trans-
actional Contention Managers. In PODC, pages 258–264, 2005.

[24] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional Memory Coherence and Consistency. In ISCA,
pages 102–113, 2004.

[25] T. Harris and K. Fraser. Language Support for Lightweight Transac-
tions. In OOPSLA, pages 388–402, 2003.

[26] T. Harris and K. Fraser. Revocable Locks for Non-Blocking Program-
ming. In PPoPP, pages 72–82, 2005.

[27] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2nd edition, 2010.

[28] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory
Transactions. In PLDI, pages 14–25, 2006.

[29] A. Hassan, R. Palmieri, and B. Ravindran. Remote Invalidation:
Optimizing the Critical Path of Memory Transactions. In IPDPS,
pages 187–197, 2014.

[30] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software
Transactional Memory for Dynamic-Sized Data Structures. In PODC,
pages 92–101, 2003.

[31] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In ISCA, pages 289–300,
1993.

[32] B. Hindman and D. Grossman. Atomicity via Source-to-Source Trans-
lation. In MSPC, pages 82–91, 2006.

[33] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java
Locks Can Mostly Do Without Atomic Operations. In OOPSLA, pages
130–141, 2002.

[34] G. Korland, N. Shavit, and P. Felber. Deuce: Noninvasive Software
Transactional Memory in Java. Transactions on HiPEAC, 5(2), 2010.

[35] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the Overhead of Nonblocking
Software Transactional Memory. In TRANSACT, 2006.

[36] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics
for Java STM. In SPAA, pages 314–325, 2008.

[37] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Single Global Lock Semantics in a
Weakly Atomic STM. In TRANSACT, 2008.

[38] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. In HPCA, pages 254–265,
2006.

[39] K. F. Moore and D. Grossman. High-Level Small-Step Operational
Semantics for Transactions. In POPL, pages 51–62, 2008.

[40] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.
Hardware Atomicity for Reliable Software Speculation. In ISCA,
pages 174–185, 2007.

[41] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. In
PACT, pages 365–375, 2007.

[42] V. Pankratius and A.-R. Adl-Tabatabai. A Study of Transactional
Memory vs. Locks in Practice. In SPAA, pages 43–52, 2011.

[43] C. G. Ritson and F. R. Barnes. An Evaluation of Intel’s Restricted
Transactional Memory for CPAs. In CPA, pages 271–292, 2013.

[44] K. Russell and D. Detlefs. Eliminating Synchronization-Related
Atomic Operations with Biased Locking and Bulk Rebiasing. In OOP-
SLA, pages 263–272, 2006.

[45] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software Transac-
tional Memory System for a Multi-Core Runtime. In PPoPP, pages
187–197, 2006.

[46] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A
Low Overhead, Software-Only Approach for Supporting Fine-Grain
Shared Memory. In ASPLOS, pages 174–185, 1996.

[47] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai.
Dynamic Optimization for Efficient Strong Atomicity. In OOPSLA,
pages 181–194, 2008.

[48] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni.
Hybrid Static–Dynamic Analysis for Statically Bounded Region Seri-
alizability. In ASPLOS, 2015. To appear.

[49] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
Isolation and Ordering in STM. In PLDI, pages 78–88, 2007.

[50] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A Com-
prehensive Strategy for Contention Management in Software Transac-
tional Memory. In PPoPP, pages 141–150, 2009.

[51] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Priva-
tization Techniques for Software Transactional Memory. In PODC,
2007.

[52] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable
Transactions with a Single Atomic Instruction. In SPAA, pages 275–
284, 2008.

[53] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis. Adaptive Locks:
Combining Transactions and Locks for Efficient Concurrency. In
PACT, pages 3–14, 2009.

[54] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA,
pages 70–82, 2001.

[55] J.-T. Wamhoff, C. Fetzer, P. Felber, E. Rivière, and G. Muller. Fast-
Lane: Improving Performance of Software Transactional Memory for
Low Thread Counts. In PPoPP, pages 113–122, 2013.

[56] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael. Evaluation of Blue Gene/Q Hardware
Support for Transactional Memories. In PACT, pages 127–136, 2012.

[57] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code
Generation and Optimization for Transactional Memory Constructs in
an Unmanaged Language. In CGO, pages 34–48, 2007.

[58] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Eval-
uation of Intel Transactional Synchronization Extensions for High-
Performance Computing. In SC, pages 19:1–19:11, 2013.

[59] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-H. S.
Lee. Kicking the Tires of Software Transactional Memory: Why the
Going Gets Tough. In SPAA, pages 265–274, 2008.

[60] F. Zyulkyarov, S. Stipic, T. Harris, O. S. Unsal, A. Cristal, I. Hur, and
M. Valero. Discovering and Understanding Performance Bottlenecks
in Transactional Applications. In PACT, pages 285–294, 2010.

