

Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language Models

Minjia Zhang, Xiaodong Liu, Wenhan Wang, Jianfeng Gao, Yuxiong He Microsoft

Highlights

- FGD (Fast Graph Decoder) is a fast and scalable decoding algorithm for accelerating the inference of neural language modeling and its end applications
- On NMT, FGD obtains more than 14X speedup on softmax layer execution time over full-softmax with competitive BLEU score to the baseline.
- On NLM, FGD outperforms full-softmax by an order of magnitude with logarithmic scalability.

Background & Motivation

- High computational complexity of the softmax layer when the vocabulary size is large.
- Decoding bottleneck limits the applicability of NLMs in interactive services.

Goal: speedup the decoding process of neural language model and its end applications.

Visualization of closeness relation

Semantic more similar words are closer in distance.

Method (Fast Graph Decoder)

• Transform word embeddings to exploit intrinsic closeness relationship between words.

FGD overview

- FGD has a complexity of O(D X log | V |)

Step 1: Small world graph construction

- Inner product as a closeness measure is insufficient
- Inner product preserving transformation

Step 2: Decoding as searching small world graphs

Algorithm 1

Offline preprocessing algorithm FGD–P

- **Input:** Trained weights of the softmax layer X, and bias vector b.
- 2: Output: Small world graph G, and U_{max} .
- 3: **Hyperparameter:** Small world graph neighbor degree M.
- 4: **for all** i **in** (0..|X|-1) **do**
- $X_{:i} \leftarrow [X_{:i}; b_i]$

▶ Word embedding and bias fusion

- 6: $U_{max} \leftarrow \max_i ||X_{:i}||_2$
- 7: **for all** i **in** 0..(|W|-1) **do**
- $\overline{X}_{:i} \leftarrow [\tilde{X}_{:i}; \Delta_i]$
- 10: $G \leftarrow CreateSwg(\overline{X}, M)$

Long-range edge

Short-range edge

Closest neighbor

- ▷ Calculate the normalizer

Algorithm 2 Online inference algorithm FGD–I

- 1: **Input:** Context vector h, small world graph G, and U_{max} .
- 2: Output: Probability distribution P over top-K word hypotheses.
- : **Hyperparameter:** Candidate queue length efSearch.
- \triangleright Map context vector from \mathbb{R}^D to \mathbb{R}^{D+2} 4: $\overline{h} \leftarrow [h; 1; 0]$
- 5: $I^K, D^K \leftarrow SearchSwg(G, \overline{h}, K)$ \triangleright Return top-K hypotheses with minimal distance to \overline{h} 6: **for all** i **in** 0..(K-1) **do**
- $S[I_{:i}^K] \leftarrow \frac{1}{2} \left(\|\overline{h}\|_2^2 + U_{max}^2 D_{:i}^{K^2} \right)$ Map Euclidean distance back to inner product
- 8: $P \leftarrow exp(S) / \sum exp(S)$ \triangleright Compute top-K softmax probability distribution

Experiments

Neural machine translation: Decoding time and BLEU score

- IWSLT'14 German-English corpus, 50K vocab size.
- **FGD** obtains more than **14X** speedup on softmax layer execution time over full-softmax with a similar BLEU score to the baseline
- **FGD** obtains **30X** speedup at the cost of decreasing 0.67 BLEU score.

Sensitivity of sequence lengths and beam sizes

efSearch	Beam = 1	Beam = 2	Beam = 5	Beam = 10
20	26.69	27.65	27.81	27.62
50	27.55	28.76	29.06	28.9
100	27.63	28.94	29.28	29.1
200	27.53	28.99	29.28	29.22
Full	27.36	28.91	29.45	29.34

Internals of FGD

efSearch	P@1	P@2	P@5	P@10	dist_cnt (FGD/ Full)
20	0.939	0.934	0.929	0.918	981 / 50K
50	0.974	0.974	0.973	0.971	1922 / 50K
100	0.986	0.986	0.987	0.987	3310 / 50K
200	0.992	0.993	0.994	0.994	5785 / 50K

- Precision and distance computation results explain the decoding accuracy and speedup of and time.

Language modeling: Impact of vocabulary size

IVI	P@K	FGD (efSearch)				
		20	50	100	200	
10K	P@1	0.870	0.938	0.989	1.000	
	P@10	0.909	0.972	0.992	0.998	
20K	P@1	0.845	0.932	0.975	0.995	
	P@10	0.871	0.955	0.987	0.997	
40K	P@1	0.808	0.912	0.936	0.980	
	P@10	0.845	0.931	0.961	0.991	
80K	P@1	0.832	0.933	0.966	0.982	
	P@10	0.858	0.945	0.978	0.994	

FGD scales much better and the improvement becomes more significant with larger vocabulary sizes.

Acknowledgement

We thank Kevin Duh for reading a previous version of this paper and providing feedback. We thank the anonymous reviewers for their helpful suggestions for improving this paper. We thank Yi-Min Wang for supporting this work.