
GRIP: Capacity-OptimizedHigh-Performance
Nearest Neighbor Search
for Vector Search Engine

Minjia Zhang and Yuxiong He

Email:[minjiaz,yuxhe]@microsoft.com

Microsoft AI and Research

Evolution of Search

Classic information retrieval is based on keyword matching and user behavior
signals

Novel search scenarios have emerged

Natural language conversation
Question and answer
Image/multimedia
Mobile search
Product search
…

Deep learning based

2

Vectorization and ANN Search

Embedding (offline)
Doc

Doc
Doc

Doc

ANN: Tree-based, hashing-
based, quantization-based,
nn-graph based 3

NRM

N = 1~1000 million points

Rd (e.g., d = 128)

Vectorization and ANN Search

Embedding (offline)
Doc

N = 1~1000 million points

Rd (e.g., d = 128)

Query

Embedding (online)

Top-3 nearest
neighbors

Doc
Doc

Doc

ANN: Tree-based, hashing-
based, quantization-based,
nn-graph based 4

NRM

NRM

Three Metrics to Optimize

Recall = The fraction of top-K retrieved are exact nearest neighbors

Important for getting high-quality results

Latency = Per-query response time

Must return in response time limit

Memory overhead = Index size

A crucial factor for large-scale dataset

5

Three Metrics to Optimize

Recall = The fraction of top-K retrieved are exact nearest neighbors

Important for getting high-quality results

Latency = Per-query response time

Must return in response time limit

Memory overhead = Index size

Can we design an ANN algorithm to achieve low search latency and high
accuracy while being memory-efficient and scalable?

A crucial factor for large-scale dataset

6

GRIP: A capacity-optimized ANN algorithm that leverages DRAM and SSDs
simultaneously

• Jointly optimize latency, recall, and memory cost
• Fast in-memory and end-to-end search time
• Significantly reduced memory usage

• Results
• Compared to the SOTA graph-based approach, GRIP uses 12--14X less memory with

comparable accuracy and latency
• Compared to a highly efficient compression-based approach, GRIP is 14--23X faster

with higher recall and a similar memory cost

7

Our Results

Talk Outline

• Background and Challenges

• Design

• Memory Efficiency

• Latency Reduction

• Accuracy Boost

• Evaluation Results

8

Existing Approaches

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with
great navigability

• N-greedy best-first search until
reaching at local optimum

9HNSW: https://github.com/nmslib/hnswlib
NSG: github.com/ZJULearning/nsg

https://github.com/nmslib/hnswlib
https://github.com/ZJULearning/nsg

Existing Approaches

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with
great navigability

• N-greedy best-first search until
reaching at local optimum

High recalls and low latency

Low ratio of vectors/machine

10

Existing Approaches

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with
great navigability

• N-greedy best-first search until
reaching at local optimum

Compression based algorithms (FAISS)

• Compresses vectors into short code to save
DRAM

• Combines with two-level index (e.g. IVF) to
avoid exhaust search

• At search time, search a few closest clusters

High recalls and low latency

Low ratio of vectors/machine

11FAISS: https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss

Existing Approaches

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with
great navigability

• N-greedy best-first search until
reaching at local optimum

Compression based algorithms (FAISS)

• Compresses vectors into short code to save
DRAM

• Combines with two-level index (e.g. IVF) to
avoid exhaust search

• At search time, search a few closest clusters

High recalls and low latency

Low ratio of vectors/machine

High ratio of vectors/machine

Low recall@1, decent recall@100

12

Existing Approaches

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with
great navigability

• N-greedy best-first search until
reaching at local optimum

Compression based algorithms (FAISS)

• Compresses vectors into short code to save
DRAM

• Combines with two-level index (e.g. IVF) to
avoid exhaust search

• At search time, search a few closest clusters

High recalls and low latency

Low ratio of vectors/machine

High ratio of vectors/machine

Low recall@1, decent recall@100

13

Drink from Both Glasses?

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with
great navigability

• N-greedy best-first search until
reaching at local optimum

Compression based algorithms (FAISS)

• Compresses vectors into short code to save
DRAM

• Combines with two-level index (e.g. IVF) to
avoid exhaust search

• At search time, search a few closest clusters

High recalls and low latency

Low ratio of vectors/machine

High ratio of vectors/machine

Low recall@1, decent recall@100

Can we get the best of both worlds?

14

Design of GRIP

15

“GRIP” Overview

• Preview stage (DRAM)
• A copy of compressed vectors
• Graph routing index
• Memory-bandwidth optimized PQ

• Validation Stage (SSDs)
• A copy of full-precision vectors
• Lightweight recomputation in full-

precision

16

Memory Efficiency

• Challenges: Memory capacity
becomes a scalability bottleneck
as the #vectors grows
• E.g., HNSW takes 51G to index 80

millions of 128d feature vectors,
which do not fit in 32G main
memory

0.64
2.56

6.4

25.6

51.2

0

10

20

30

40

50

60

1 4 10 40 80

In
d

ex
 s

iz
e

(G
ig

aB
yt

es
)

Num. of vectors (in millions)

Does not fit
into memory

17

Index size = #vectors x bytes per vector + index metadata

...

Cluster_0

Short Code

...

Cluster_1

Short Code

...

Cluster_n

Short Code
Connectivity
Augmenting

Graph-routing-index

c0

c1

cn

A

B

Memory Efficiency

• Solution: Graph routing index +
Compressed short code
• Generalized proximity graph as an

index of grouped vectors

• Each group consists of a small set of
vectors, compressed with product
quantization

• Graph edge adjusted to provide
reachability guarantee

18

Latency Reduction

• Challenge: Distance estimation between the unquantized q and
quantized short code can be slow

Asymmetric distance estimator: 2 X M look-ups to compute similarity
score -> memory bandwidth bound

19

Latency Reduction

• Solution:
• Memory bandwidth optimized PQ

• Estimates distance with M lookups:
effectively cutting the memory
bandwidth consumption by half

...

Cluster_0

Short Code PDV

...

Cluster_1

Short Code PDV

...

Cluster_n

Short Code PDV
Connectivity
Augmenting

c0

c1

cn

A

BGraph-routing-index

0

0.5

1

1.5

2

2.5

3

3.5

Ex
ec

u
ti

o
n

 t
im

e
(m

s) PQ

PQ*

20

Pre-compute partial-distance value (PDV)
offline and trade-off 1-float per vector for M
lookups

Accuracy Boost

• Challenge: Vector compression
provides memory compactness but
results in poor recall on large
datasets

Vectors (y1, y2) quantized to the
same short code (c1) have the same
estimated distance to q

21

Accuracy Boost

• Solution: Keep a copy of full-
precision vectors on SSDs and
validate a short candidate list from
in-memory search

22

DRAM SSD

Capacity Low High

Cost High Low

Power consumption High Low

Scalability GBs per DIMM TBs per PCIe

Latency Low High

Accuracy Boost

• Challenge: Accessing SSD is still
much slower than accessing DRAM

• Solution: Lightweight validation
• Parallel access multiple flash memory

packages to reach high-aggregate
bandwidth

• Hide high SSD latency through
overlapping distance computations
and IO

23

Evaluation

24

Evaluation Metrics

• Recall

• Latency

• Memory cost

• VQ = V x Q

=
#𝑉𝑒𝑐𝑡𝑜𝑟𝑠

𝑀𝑎𝑐ℎ𝑖𝑛𝑒
x Query processing rate

25

Evaluation Metrics

• Recall

• Latency

• Memory cost

• VQ = V x Q

=
#𝑉𝑒𝑐𝑡𝑜𝑟𝑠

𝑀𝑎𝑐ℎ𝑖𝑛𝑒
x Query processing rate

#Machines =
#𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑋 𝑄

𝑉𝑄
The higher the VQ, the less number of machines needed!

26

Performance: GRIP vs FAISS/IVFPQ

• To get high recall under similar
memory cost
• GRIP is 2– 19X faster

• GRIP improves VQ by 2--12X

• To get similar recall or higher
recall target
• GRIP is 14– 23X faster

• GRIP improves VQ by 12--14X

27

Performance: GRIP vs HNSW

• To get similar accuracy and latency
• GRIP improves VQ by 2.5—15X

• GRIP reduces the memory cost by 12—14X

28

Cost Comparison

IVFPQ
(Product
quantization)

HNSW
(Proximity
graphs)

GRIP

Low search
latency

High
accuracy

Low memory
cost

29

Summary

• GRIP leverages both DRAM and SSDs simultaneously, without
the need to scale out to accommodate large datasets

• Capacity-optimized through
• Memory efficiency improvement

• Latency reduction
• Accuracy boost

• Support vector search in Microsoft with great cost reduction

30

Thank you!

31

Q&A

32

