

GRIP: *Capacity-Optimized* High-Performance Nearest Neighbor Search for Vector Search Engine

Minjia Zhang and Yuxiong He Email:[minjiaz,yuxhe]@microsoft.com

Microsoft AI and Research

Evolution of Search

Classic information retrieval is based on *keyword matching* and *user behavior signals*

...

Novel search scenarios have emerged

Deep learning based

Natural language conversation
Question and answer
Image/multimedia
Mobile search
Product search

Vectorization and ANN Search

ANN: Tree-based, hashingbased, quantization-based, nn-graph based

Vectorization and ANN Search

Three Metrics to Optimize

A crucial factor for large-scale dataset

Three Metrics to Optimize

Can we design an ANN algorithm to achieve low search latency and high accuracy while being memory-efficient and scalable?

Our Results

GRIP: A capacity-optimized ANN algorithm that leverages DRAM and SSDs simultaneously

Jointly optimize latency, recall, and memory cost

- Fast in-memory and end-to-end search time
- Significantly reduced memory usage

Results

- Compared to the SOTA graph-based approach, GRIP uses 12--14X less memory with comparable accuracy and latency
- Compared to a highly efficient compression-based approach, GRIP is 14--23X faster with higher recall and a similar memory cost

Talk Outline

- Background and Challenges
- Design
 - Memory Efficiency
 - Latency Reduction
 - Accuracy Boost
- Evaluation Results

Proximity graphs (HNSW, NSG)

- Graph built over database vectors
- Approximates Delaunay graph with great navigability
- N-greedy best-first search until reaching at local optimum

Proximity graphs (HNSW, NSG)

- Graph built over database vectors
- Approximates Delaunay graph with great navigability
- N-greedy best-first search until reaching at local optimum

High recalls and low latencyLow ratio of vectors/machine

Proximity graphs (HNSW, NSG)

- Graph built over database vectors
- Approximates Delaunay graph with great navigability
- N-greedy best-first search until reaching at local optimum

Compression based algorithms (FAISS)

- Compresses vectors into short code to save DRAM
- Combines with two-level index (e.g. IVF) to avoid exhaust search
- At search time, search a few closest clusters

Proximity graphs (HNSW, NSG)

- Graph built over database vectors
- Approximates Delaunay graph with great navigability
- N-greedy best-first search until reaching at local optimum

Compression based algorithms (FAISS)

- Compresses vectors into short code to save DRAM
- Combines with two-level index (e.g. IVF) to avoid exhaust search
- At search time, search a few closest clusters

Proximity graphs (HNSW, NSG)

- Graph built over database vectors
- Approximates Delaunay graph with great navigability
- N-greedy best-first search until reaching at local optimum

Compression based algorithms (FAISS)

- Compresses vectors into short code to save DRAM
- Combines with two-level index (e.g. IVF) to avoid exhaust search
- At search time, search a few closest clusters

Low ratio of vectors/machine

High ratio of vectors/machine

X Low recall@1, decent recall@100

Drink from Both Glasses?

Proximity graphs (HNSW, NSG)

- Graph built over database vectors
- Approximates Delaunay graph with great navigability
- N-greedy best-first search until reaching at local optimum

Compression based algorithms (FAISS)

- Compresses vectors into short code to save DRAM
- Combines with two-level index (e.g. IVF) to avoid exhaust search
- At search time, search a few closest clusters

Can we get the best of both worlds?

High ratio of vectors/machine

X Low recall@1, decent recall@100

Low ratio of vectors/machine

14

Design of GRIP

"GRIP" Overview

- Preview stage (DRAM)
 - A copy of compressed vectors
 - Graph routing index
 - Memory-bandwidth optimized PQ
- Validation Stage (SSDs)
 - A copy of full-precision vectors
 - Lightweight recomputation in fullprecision

Memory Efficiency

- Challenges: Memory capacity becomes a scalability bottleneck as the #vectors grows
 - E.g., HNSW takes 51G to index 80 millions of 128d feature vectors, which do not fit in 32G main memory

Index size = #vectors x bytes per vector + index metadata

Memory Efficiency

- Solution: Graph routing index + Compressed short code
 - Generalized proximity graph as an index of *grouped* vectors
 - Each group consists of *a small set* of vectors, compressed with product quantization
 - Graph edge adjusted to provide reachability guarantee

Latency Reduction

• **Challenge:** Distance estimation between the unquantized q and quantized short code can be slow

$$\frac{\|q-c\|^2}{Term-A} + \frac{\sum_{m=1}^M \|c_{x^m}^m\|^2}{\frac{m=1}{Term-B}} + \frac{\sum_{m=1}^M \langle c^m, c_{x^m}^m \rangle}{\frac{m=1}{Term-C}} - \frac{\sum_{m=1}^M \langle q^m, c_{x^m}^m \rangle}{\frac{m=1}{Term-D}}$$

Asymmetric distance estimator: 2 X M look-ups to compute similarity score -> memory bandwidth bound

Latency Reduction

• Solution:

- Memory bandwidth optimized PQ
- Estimates distance with *M lookups*: effectively cutting the memory bandwidth consumption by half

Pre-compute partial-distance value (PDV) offline and trade-off 1-float per vector for M lookups

Accuracy Boost

 Challenge: Vector compression provides memory compactness but results in poor recall on large datasets

Vectors (y1, y2) quantized to the same short code (c1) have the same estimated distance to q

Accuracy Boost

 Solution: Keep a copy of fullprecision vectors on SSDs and validate a short candidate list from in-memory search

	DRAM	SSD
Capacity	Low	High
Cost	High	Low
Power consumption	High	Low
Scalability	GBs per DIMM	TBs per PCIe
Latency	Low	High

Accuracy Boost

- Challenge: Accessing SSD is still much slower than accessing DRAM
- Solution: Lightweight validation
 - Parallel access multiple flash memory packages to reach high-aggregate bandwidth
 - Hide high SSD latency through overlapping distance computations and IO

Evaluation

Evaluation Metrics

- Recall
- Latency
- Memory cost
- $VQ = V \times Q$

$$= \frac{\#Vectors}{Machine} \times \underline{Q}uery \text{ processing rate}$$

Evaluation Metrics

- Recall
- Latency
- Memory cost
- *VQ* = V x Q

$$= \frac{\#Vectors}{Machine} \times \underline{Q}uery \text{ processing rate}$$

#Machines =
$$\frac{\#Vectors X Q}{VQ}$$
 (The higher the VQ, the less number of machines needed!

Performance: GRIP vs FAISS/IVFPQ

- To get high recall under similar memory cost
 - GRIP is 2–19X faster
 - GRIP improves VQ by 2--12X
- To get similar recall or higher recall target
 - GRIP is 14–23X faster
 - GRIP improves VQ by 12--14X

	NS	I	VFPQ		G	VQ		
	113	Recall	Lat.	Mem.	Recall	Lat.	Mem.	Impr.
M	1024	0.679	8.8	40	0.904 (NS : 32)	0.6	49	12.0X
SIFT1M	512	0.678	5.4	40	0.989	1.8	49	2.4X
SII	256	0.676	3.2	40	0.986	1.2	49	2.2X
	64	0.662	2.0	40	0.948	0.7	49	2.3X
Deep10M	1024	0.602	18.5	302	0.906 (NS : 64)	1.2	377	12.3X
p1	512	0.601	15.6	302	0.975	5.4	377	2.3X
Dee	256	0.599	14.1	302	0.965	3.4	377	3.3X
	64	0.580	12.8	302	0.906	2.0	377	5.1X
SpaceV80M	1024	0.767	28.1	2552	0.925 (NS : 32)	1.2	4036	14.8X
eV	512	0.765	27.8	2552	0.977	4.7	4036	3.7X
pac	256	0.763	27.5	2552	0.971	2.7	4036	6.4X
S	64	0.752	27.2	2552	0.946	1.4	4036	12.3X

Performance: GRIP vs HNSW

- To get similar accuracy and latency
 - GRIP improves VQ by 2.5–15X
 - **GRIP** reduces the memory cost by **12–14X**

	HNSW				GRIP				VQ
	Recall	efSearch	Latency	Memory	NS	Recall	Latency	Memory	Improvement
	0.993	1280	2.3	588	512	0.989	1.8	49	15.3X
SIFT1M	0.973	320	0.6	588	128	0.976	0.8	49	9.0X
	0.947	160	0.3	588	64	0.948	0.7	49	5.1X
	0.998	1280	3.1	4662	512	0.994	3.9	377	9.8X
Deep10M	0.985	320	0.9	4662	256	0.983	2.6	377	4.3X
	0.969	160	0.4	4662	128	0.961	2.0	377	2.5X
SpaceV80M	0.972	2560	4.1	57554	512	0.977	4.7	4036	12.4X
	0.943	640	1.4	57554	128	0.961	1.8	4036	11.1X
	0.918	320	0.9	57554	64	0.946	1.4	4036	9.2X

Cost Comparison

	IVFPQ (Product quantization)	HNSW (Proximity graphs)	GRIP
Low search latency	×		
High accuracy	×		
Low memory cost		×	

Summary

- **GRIP** leverages *both DRAM and SSDs* simultaneously, without the need to scale out to accommodate large datasets
- Capacity-optimized through
 - Memory efficiency improvement
 - Latency reduction
 - Accuracy boost
- Support vector search in Microsoft with great cost reduction

Thank you!

Q&A