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Evolution of Search

Classic information retrieval is based on keyword matching and user behavior 
signals

Novel search scenarios have emerged 

Natural language conversation 
Question and answer
Image/multimedia 
Mobile search
Product search
…

Deep learning based 
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Vectorization and ANN Search
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Three Metrics to Optimize

Recall = The fraction of top-K retrieved are exact nearest neighbors

Important for getting high-quality results

Latency = Per-query response time

Must return in response time limit

Memory overhead = Index size

A crucial factor for large-scale dataset
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Three Metrics to Optimize

Recall = The fraction of top-K retrieved are exact nearest neighbors

Important for getting high-quality results

Latency = Per-query response time

Must return in response time limit

Memory overhead = Index size

Can we design an ANN algorithm to achieve low search latency and high 
accuracy while being memory-efficient and scalable? 

A crucial factor for large-scale dataset
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GRIP: A capacity-optimized ANN algorithm that leverages DRAM and SSDs 
simultaneously

• Jointly optimize latency, recall, and memory cost
• Fast in-memory and end-to-end search time
• Significantly reduced memory usage

• Results
• Compared to the SOTA graph-based approach, GRIP uses 12--14X less memory with 

comparable accuracy and latency
• Compared to a highly efficient compression-based approach, GRIP is 14--23X faster 

with higher recall and a similar memory cost
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Talk Outline

• Background and Challenges

• Design

• Memory Efficiency

• Latency Reduction

• Accuracy Boost

• Evaluation Results 
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Existing Approaches

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with 
great navigability

• N-greedy best-first search until 
reaching at local optimum  

9HNSW: https://github.com/nmslib/hnswlib
NSG: github.com/ZJULearning/nsg

https://github.com/nmslib/hnswlib
https://github.com/ZJULearning/nsg
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Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with 
great navigability

• N-greedy best-first search until 
reaching at local optimum  

Compression based algorithms (FAISS)

• Compresses vectors into short code to save 
DRAM

• Combines with two-level index (e.g. IVF) to 
avoid exhaust search

• At search time, search a few closest clusters

High recalls and low latency

Low ratio of vectors/machine

11FAISS: https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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Drink from Both Glasses?

Proximity graphs (HNSW, NSG)

• Graph built over database vectors

• Approximates Delaunay graph with 
great navigability

• N-greedy best-first search until 
reaching at local optimum  

Compression based algorithms (FAISS)

• Compresses vectors into short code to save 
DRAM

• Combines with two-level index (e.g. IVF) to 
avoid exhaust search

• At search time, search a few closest clusters

High recalls and low latency

Low ratio of vectors/machine

High ratio of vectors/machine

Low recall@1, decent recall@100

Can we get the best of both worlds?
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Design of GRIP
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“GRIP” Overview

• Preview stage (DRAM)
• A copy of compressed vectors
• Graph routing index 
• Memory-bandwidth optimized PQ

• Validation Stage (SSDs)
• A copy of full-precision vectors 
• Lightweight recomputation in full-

precision 
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Memory Efficiency

• Challenges: Memory capacity 
becomes a scalability bottleneck 
as the #vectors grows
• E.g., HNSW takes 51G to index 80 

millions of 128d feature vectors, 
which do not fit in 32G main 
memory
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Index size = #vectors x bytes per vector + index metadata
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Memory Efficiency

• Solution: Graph routing index + 
Compressed short code
• Generalized proximity graph as an 

index of grouped vectors

• Each group consists of a small set of 
vectors, compressed with product 
quantization

• Graph edge adjusted to provide 
reachability guarantee
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Latency Reduction

• Challenge: Distance estimation between the unquantized q and 
quantized short code can be slow

Asymmetric distance estimator: 2 X M look-ups to compute similarity 
score  -> memory bandwidth bound
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Latency Reduction

• Solution: 
• Memory bandwidth optimized PQ

• Estimates distance with M lookups: 
effectively cutting the memory 
bandwidth consumption by half
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Pre-compute partial-distance value (PDV) 
offline and trade-off 1-float per vector for M 
lookups



Accuracy Boost

• Challenge: Vector compression 
provides memory compactness but 
results in poor recall on large 
datasets

Vectors (y1, y2) quantized to the 
same short code (c1) have the same 
estimated distance to q

21



Accuracy Boost

• Solution: Keep a copy of full-
precision vectors on SSDs and 
validate a short candidate list from 
in-memory search
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DRAM SSD

Capacity Low High

Cost High Low

Power consumption High Low

Scalability GBs per DIMM TBs per PCIe

Latency Low High



Accuracy Boost

• Challenge: Accessing SSD is still 
much slower than accessing DRAM

• Solution: Lightweight validation
• Parallel access multiple flash memory 

packages to reach high-aggregate 
bandwidth

• Hide high SSD latency through 
overlapping distance computations 
and IO
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Evaluation
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Evaluation Metrics

• Recall

• Latency

• Memory cost

• VQ = V x Q

= 
#𝑉𝑒𝑐𝑡𝑜𝑟𝑠

𝑀𝑎𝑐ℎ𝑖𝑛𝑒
x Query processing rate
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Evaluation Metrics

• Recall

• Latency

• Memory cost

• VQ = V x Q

= 
#𝑉𝑒𝑐𝑡𝑜𝑟𝑠

𝑀𝑎𝑐ℎ𝑖𝑛𝑒
x Query processing rate

#Machines = 
#𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑋 𝑄

𝑉𝑄
The higher the VQ, the less number of machines needed!
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Performance: GRIP vs FAISS/IVFPQ

• To get high recall under similar 
memory cost
• GRIP is 2– 19X faster

• GRIP improves VQ by 2--12X

• To get similar recall or higher 
recall target
• GRIP is 14– 23X faster

• GRIP improves VQ by 12--14X
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Performance: GRIP vs HNSW

• To get similar accuracy and latency 
• GRIP improves VQ by 2.5—15X

• GRIP reduces the memory cost by 12—14X
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Cost Comparison

IVFPQ 
(Product 
quantization)

HNSW 
(Proximity 
graphs)

GRIP

Low search 
latency

High 
accuracy

Low memory 
cost
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Summary

• GRIP leverages both DRAM and SSDs simultaneously, without 
the need to scale out to accommodate large datasets

• Capacity-optimized through
• Memory efficiency improvement

• Latency reduction 
• Accuracy boost

• Support vector search in Microsoft with great cost reduction
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Thank you!
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Q&A
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