
Our team: Zehua Hu, Menghao Li, Jeffrey Zhu , Elton Zheng, Mingqin Li, Jason Li, Yuxiong He

Microsoft AI and Research



Deep Learning at Microsoft

2



Deep Learning Inference Service

• Serves Bing, Office, and Cortana
• Large scale

• Millions of model inferences per second
• Hundreds of models
• Tens of thousands of servers
• Forty data centers worldwide

• Variety of serving requirements
• TensorFlow, PyTorch
• Windows, Linux
• CPU, GPU

• Strict latency requirements
• Often single-digit milliseconds

3



Model Optimization Example

• Large-scale BERT1 for Bing web ranking
• 1 million queries per second

• TensorFlow latency and throughput were unacceptable
• Hand-optimized BERT on V100 GPU
• 800x throughput increase
• Millions of dollars saved
• Over a month of dev time
• Blog post
• https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-

in-search-experience-using-azure-gpus/

4
1. Devlin et. al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, https://arxiv.org/pdf/1810.04805.pdf

https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/
https://arxiv.org/pdf/1810.04805.pdf


Model Optimization Challenges

• Existing DL frameworks don’t fit our requirements
• Challenges
• Reducing latency to a scenario-acceptable number
• Supporting advanced models at large scale while saving cost
• Agility to bring new optimization techniques into production

• We need new solutions to ship new and exciting models

5



Model Optimization Solutions

6

Custom Optimizations

• Rewrite models with high 
performance C++ library

• Customized serving runtime and 
performance tuning

• Example: DeepCPU, DeepGPU, 
TensorRT

Low latency and high throughput

Low agility

Best utilization of hardware

Framework Integration

• Integrate custom ops with existing 
frameworks (e.g., TF, PyTorch)

• Replace nodes in model graphs and 
leverage existing framework serving 
engine

• Example: Customized TensorFlow, 
WinML

Less development work

Suboptimal performance

Decent latency improvement 

Can we achieve low latency, high throughput, and high agility?

Compiler

• Graph-level optimizations

• Optimized code generation

• Cross-platform, cross-device



Case-Study 1: Query Understanding for Bing 

7

• Generate query encoding for ranking
• Model: CNN embedding + LSTM + scoring function

• Latency SLA: 35ms

• TensorFlow: 112ms on CPU
• TVM + Custom RNN: 34ms on CPU



A Hybrid Approach: TVM + DeepCPU

8

• DeepCPU1 is plugged in as TVM external 
library
• Automatically identify high-level TF constructs

• Utilize TensorFlow scopes
• Identify single- and bi-directional LSTMs

• Rewrite Relay graph
• Replace subgraph with a custom op node

• 63ms -> 15ms

• CNN and the rest of graph are optimized and 
auto-tuned by TVM
• 49ms -> 19ms (2.5 times speedup)

1. “DeepCPU: Serving RNN-based Deep Learning Models 10x Faster”, Zhang et. al. USENIX ATC 2018



Case-Study 2: Azure QnA Maker Service

9

• Azure cognitive service that creates question-and-answer bots
• Model: Distilled BERT

• Latency SLA: 10ms

• TensorFlow: 73ms on CPU, 10.1ms on GPU
• TVM + our improvements: 28ms on CPU, 5.5ms on GPU



Optimizing BERT with TVM on GPU

10

• New operators
• OneHot, Erf, BatchMatMul with 

> 3 dimensions
• New softmax schedule tailored for 

large-vocabulary projection
• Adding support for half-precision 

and extended GEMM on TensorCore

• Still a gap with hand-tuned version 
but decent speedup over TF-GPU 
(46% improvement) On Nvidia V100

10.1

14.1

9.8

7.4

5.5

3.3

0

2

4

6

8

10

12

14

16

TF-GPU TVM: with
unsupported

ops running on
CPU

TVM: added
unsupported

ops

TVM:
optimized
softmax

TVM:
TensorCore +

fp16

Customized
optimization

La
te

nc
y 

(m
s)



Contributions to TVM

11

• CombineParallelDense IR pass
• Operators for TensorFlow and ONNX frontends
• Improve softmax compute and CPU schedule
• Auto-tune softmax schedule
• > 80% improvement on 16 cores

• Fix schedule_extern to prevent fusion of external ops
• ~50% improvement when using external libraries on CPU

• Support MKL and cuBLAS for BatchMatMul
• Windows support and fixes



Our Experience with TVM

12

• Vibrant, supportive, and open community
• Developer-friendly
• Emphasis on innovating and experimenting with new techniques
• Performance improvement over popular DL frameworks
• Several models shipped to production

• We are looking forward to contributing and trying new features from the 
community!
• Dynamic shapes, TensorFlow dynamic RNN, bring-your-own-codegen

Thank you!

We’re hiring!


