DUET: A Compiler-Runtime Subgraph Scheduling
Approach for Tensor Programs on a Coupled
CPU-GPU Architecture

Minjia Zhang*
Microsoft
minjiaz@microsoft.com

Abstract—Deep neural networks (DNNs) are currently the
foundation for many artificial intelligence tasks. Existing DL
frameworks and compilers often focus on optimizing DL infer-
ence speed against CPUs and GPUs in isolation while missing
the opportunities to reap the benefits of aggregated computation
power from both CPU and GPU. We show that there are DNNs
that exhibit complex computation patterns, and different compo-
nents might be suitable for executing on different types of devices
to maximize performance gains. Based on this observation, we
present a DNN inference engine, called DUET, that explores
potential concurrent execution opportunities on heterogeneous
CPU-GPU architecture for DNN inference. In particular, we
introduce (i) a coarse-grained partitioning strategy that divides a
DNN computation graph into subgraphs that retain high compu-
tational granularity with relatively low communication volume,
(ii) a compiler-aware profiling method to include DL compiler
optimization into the loop to improve scheduling decisions, and
(iii) a greedy-correction subgraph scheduling algorithm that
automatically maps the DNN computation to CPU and GPU
without input from model developers. We evaluate DUET against
several DNNs that exhibit complex model structures and compare
its performance against existing DL frameworks and the state-of-
the-art DNN compiler. The experiment results show that DUET
is much faster than existing DL frameworks and obtains 1.5-2.3
times and 1.3-6.4 times speed-ups against the optimized code
by the state-of-the-art DNN compiler on GPU and CPU alone,
respectively.

Index Terms—DNNs, Efficient Inference, Compiler, Heteroge-
neous Execution

I. INTRODUCTION

The development of deep neural networks (DNNSs) is driving
an explosion in multiple artificial intelligence domains, such
as computer vision, natural language processing, and speech
recognition. However, the ability of DNN comes at the cost
of high computational complexity. In order to achieve high
efficiency for DNN on existing general-purpose hardware such
as CPU and GPU, popular deep learning (DL) frameworks
such as TensorFlow [10] and PyTorch [32] resort to incor-
porate highly optimized kernels via hardware vendors such
as Nvidia cuDNN [14] or Intel MKL-DNN [3] as back-
end. However, when a tensor operator is not supported by
the pre-optimized vendor library, the computation efficiency
decreases dramatically. To keep up with the pace of the fast
innovations in DNNs, major players in the industry develop

$Work performed as a Microsoft intern. * Equal contribution.

Zehua Hu*¥
Beijing University
t-zehhu @microsoft.com

Mingqin Li
Microsoft
mingqli@microsoft.com

highly optimized in-house operators [43], [47]. However, this
raises challenges because of the increasing complexity of
tensor operations in DNNs and the volatility of DL algorithms.
The complexity further increases when multiple versions of
the same model have to be optimized to deploy on different
hardware platforms.

Motivated by improving the agility of optimizing DNNs,
there has been a great interest in developing automated
frameworks to handle the unprecedented amount of innova-
tions. Notably, recent research has developed neural network
compilers, such as XLA [9], Halide [35], Glow [38], Tensor
Comprehension [41], and TVM [12]. Many of them use
static analysis to find pipelined operations that can be fused
together for improved performance and generate platform-
dependent code efficiently for models trained through popular
DL frameworks.

While DL compilers produce highly optimized code for
DNN:s, existing works often focus on optimizing DNNs for
CPUs, GPUs, and other accelerators in isolation. However,
servers with coupled CPUs and GPUs are now ubiquitous in
data centers and cloud environments. From a practical point of
view, combining CPUs and GPU means that the computation
power provided by the CPU and the GPU can be aggregated to
improve DNN performance. Despite the potential advantages
of this strategy, there is, to the best of our knowledge, no DL
compiler that can reap the benefit of this approach.

On another aspect, while the standard DNNs consist of a
linear task dependence chain with more or less homogeneous
components, e.g., ResNet [17] and VGG [39], there is a large
number of DNNs that exhibit more complex model structures
and diverse computation patterns. For example, some models
exhibit higher fan-outs [29], [31], [44], implying more poten-
tial for parallel execution, while others contain sub-networks
that have very different characteristics [13], where some
components are more suitable to execute on one type of device
than the other, implying potential benefits for heterogeneous
execution. Existing DL compilers lack efficiency in handling
these DNNs. For example, they often employ a Operators-
in-Sequence scheduling, where an operator runs, presumably
using multiple threads, but one operator starts running only
after the previous one finishes. They also lack the necessary
abstractions to support hardware-conscious inference execu-

tion over multiple devices to exploit all the resources available
on a single server.

To address these limitations, we propose DUET, a DNN
inference engine, which supports heterogeneity-conscious and
compiler-aware DNN inference on a coupled CPU-GPU ar-
chitecture. Our main contributions are the following:

« We make the case for heterogeneity- and compiler-aware
DNN inference and present DUET, an engine design for
concurrent execution of DNN computation on heteroge-
neous hardware.

e We introduce a coarse-grained partitioning strategy that
allows the partitioned subgraphs to retain high compu-
tational granularity with relatively low communication
volume.

o« We show that involving the DL compiler in the het-
erogeneity optimization loop is beneficial for improving
scheduling decisions.

e We introduce a greedy-correction subgraph scheduling
algorithm, which automatically partitions the work of
DNN inference between the CPU and GPU without input
from model developers.

DUET builds on top of a unified graph-level IR and
TVM [12], which is framework agnostic. It also makes
the hardware implementation and the scheduling invisible to
DL/ML practitioners, avoiding the developing cost of algo-
rithms specialized for heterogeneous hardware. If a model
does not have much intrinsic parallelism and cannot have
performance improvements through the subgraph scheduling,
DUET falls back to the original best-performing single device
execution. The experimental results show that DUET achieves
1.3-6.4 times speed-ups on CPU and 1.5-2.3 times speed-ups
on GPU, respectively, on three DNNs — Wide-and-Deep [13],
Siamese Network [31], and MT-DNN [29], against the state-
of-the-art DNN compiler.

II. BACKGROUND

A. DNN Inference

The general life-cycle of DNNs from its birth to deployment
comprises two major stages. The first stage is the designing
and the training of a DNN by a model scientist, with the
primary goal of achieving the highest feasible accuracy. The
second stage is the deployment of the pre-trained DNN to a
target hardware (often on GPU or CPUs [20], [43], [47]) to
benefit end users, often done by a deployment engineer. These
two stages are iterative processes: model scientists iterate until
it reaches the target performance in terms of accuracy, whereas
the deployment engineers iterate until the inference speed
satisfies a latency SLA (e.g., often a few milliseconds per
query). These two stages are most often separate processes,
and optimizing the performance of DNNs to meet stringent
latency targets can be very time-consuming. Therefore, the
goal of DNN inference optimization is to minimize the model
inference time while improving optimization agility to accel-
erate the overall deployment cycle.

[— N
' ¥ Opytorch % mxnet!
oNN

Graph-level optimization

e Operator fusion
e Data layout

: e Tiling/unrolling
Low-level optimization e \ectorization
7
] eLLVM
Code generator o CUDA

Fig. 1. The compilation pipeline for DNNs.

B. DNN Compilation

There has been recent work on optimizing DNN perfor-
mance through DL compilers, which emit optimized code that
runs the model efficiently on a target hardware [9], [12],
[35], [38], [41]. These DL compilers work in the context
of high-level DNN specifications, provided by deep learning
frameworks such as TensorFlow [10], PyTorch [32], and
MXNet [11]. The optimization passes are applied at different
stages of the compilation process. Fig. 1 shows a typical
processing flow of these DL compilers, which consists of
five layers: 1) front-end, 2) intermediate representation (IR),
3) graph-level optimization, 4) low-level optimization, and 5)
back-end.

The front-end transforms high-level DSL of DNNs into
compiler-specific IRs. These IRs are usually in the form of
data flow graphs, in which each node represents a tensor
operator, and each edge denotes the data dependency between
operators. Based on these IRs, graph-level optimizations can
be applied to fuse operations and optimize data layouts. Low-
level optimizations perform hardware-dependent optimizations
(e.g., tiling size, vectorization) against the fused operators to
improve data locality and utilization of the target hardware
(e.g., CPU or GPU). Finally, the back-end is responsible for
generating hardware-dependent executable instructions using
LLVM (for CPU) or CUDA (for GPU).

III. CHALLENGES AND MOTIVATIONS

This section first discusses the challenges of performing
DL inference on both CPU and GPU efficiently, and then it
presents several studies that guided the design of the approach
introduced in Section IV.

A. Challenges

First, the CPU and GPU have very different device char-
acteristics. CPU has a smaller number but faster cores, which
typically have out-of-order execution with sophisticated branch
predictions and deep cache hierarchies for reducing memory
access latency. In contrast, GPU has many but slower cores,
which are typically in-order and hide memory latency by
switching between hardware threads. This dissimilarity leads
to significant differences in their execution performance. Given

that different NN components may have different computation
patterns during inference, some components may execute
significantly faster on one device than the other. As a result,
executing even a small amount of work on the slower device
may hurt performance. Moreover, although there is a big
improvement in PCle bandwidth, CPU-GPU communication
may still create a performance bottleneck.

Feature aggregation

Taskl TaskN
Task
layers | LSTM-CRF CNN
FFN_J [_RNN CNN v Y Y

t t 1
BB . ||

attribute | | text image
v\"\O/'/v C

Fig. 3. The architecture of MT-DNN
for natural language understanding.

Shared [Transformer Encoder]
3
Lexicon encoder]

layers
(

Sentence)

Fig. 2. The architecture of Wide-
and-Deep network for heterogeneous
contents encoding.

Second, the DNN execution is heavily affected by the
model characteristics, framework, compiler optimization, and
the hardware (i.e., the HW/SW stack). Without accurate
information about a NN component’s behavior on a target
hardware, it is hard to optimally divide work between the
CPU and GPU automatically. Previous work use FLOPs to
approximate the execution time of operators [40]. However,
FLOPs is often an inaccurate proxy as operations with the
same FLOPs can result in very different latencies on CPU
and GPU, and factors such as compiler optimizations may
change the execution time significantly as well. Recent work
proposes to use profiling to characterize the performance of
NN models [28]. However, there have been fewer studies on
how to leverage the profiled statistics to make informed DNN
heterogeneous execution decisions.

Third, existing DL compilers often contain inefficiencies in
parallel execution, making executing on both CPU and GPU
challenging. For example, we observe that TVM [12], the
state-of-the-art DL compiler, employs a sequential execution
schedule of computation graphs, where the executable oper-
ators are executed synchronously in topological order. This
scheduling strategy generally works well for models with a
sequential chain of tasks, such as ResNet [17], VGG [39],
and SqueezeNet [23]. However, the structure of DNNSs is
more diverse and complex than just a sequential chain. For
example, Fig. 2 shows the structure of a Wide-and-Deep
network [46], which combines convolutional neural network
(CNN), recurrent neural network (RNN), feed-forward neural
network (FFN), etc. for heterogeneous contents encoding, and
Fig. 3 shows a multi-task DNN model [29] used for natural
language understanding. Both contain independent submod-
ules, yet existing DNN frameworks often miss the opportu-
nity of executing these independent components concurrently
without violating dependencies.

wide
FFN

RNN
CNN
merge

0 1 2 3 4 5 6 7
wide
FFN
RNN
CNN
merge
0 2 4 6 8 10 12 14 16

Execution Timeline(ms)

Fig. 4. The execution timeline of Wide-and-Deep models on GPU (upper)
and CPU (lower).

B. Opportunities

Despite the aforementioned challenges, we still identify op-
portunities for heterogeneous computation of DNN inference
on both CPU and GPU.

First, DNN computation exhibits diverse patterns, and
GPU is not always faster than CPU for DNN inference.
Although DNN training is often conducted on GPUs, which
is throughput-oriented, CPU sometimes provides competitive
performance compared to GPU for DNN inference. During
inference, latency is the most important metric. The batch size
at inference is often small (e.g., one or at most a few), which
limits the amount of parallelism that can be leveraged by the
massive cores on GPU. Furthermore, operators that contain
sequential dependencies, such as recurrent neural networks
(e.g., LSTM [19], GRU [15]), are also difficult to parallelize
on GPU across sequential steps. Figure 4 shows an example of
the execution timeline of the Wide-and-Deep [13] model using
TVM on both CPU and GPU. As shown, although GPU takes
less time to execute the model, the RNN execution time on
GPU is much longer than on CPU. Simply executing the model
on CPU does not work either because the CNN computation
is extremely slow on CPU. Existing DL frameworks do not
explicitly optimize for execution on both CPU and GPU,
resulting in sub-optimal performance in this case.

Second, it is possible to make good use of aggregated
computation capacity without incurring too much CPU-GPU
inter-device communication delay. To validate the performance
characteristics of the CPU-GPU communication, we use a
micro-benchmark to measure the bandwidth and latency of
CUDA point-to-point bulk transfer with respect to different
message sizes. We conduct the experiment on a machine with
Intel Xeon Gold 6152 CPU, Titan V GPU, connected through
PClIe 3.0. From the results shown in Figure 5, the latency
increases almost linearly as the message size increases. This
increased communication latency can limit the amount of
communication links between CPU and GPU. However, given
that the latency delay (e.g., from passing inputs/outputs of
tensor operators) is often less than tens of milliseconds, which

12

10

(o)}
Bandwidth(GB/s)

—— HtoD Bandwidth
--- DtoH Bandwidth

175 200

P —— HtoD latency
--- DtoH latency

0 25 50 75 100 125 150
Data volume(KB)

Fig. 5. Communication cost between CPU and GPU device.

is orders of magnitude smaller than many NN operator (e.g.,
LSTM, CNN) execution time, we may minimize the impact
from the communication overhead by retaining a relatively
high computational granularity.

Finally, coarse-grained partitioning allows the DL compiler
to perform more graph-level optimizations that improve sin-
gle device efficiency. Graph-level optimizations have been
demonstrated to be one of the best ways to achieve lower
execution time on a single device. As an example, the fusion
pass fuses multiple operators in the computation graph and
generates a rewritten graph with fused ops to improve the
temporal data locality and computation intensity. By exploiting
the observation that graph-level optimizations help improve
single device efficiency, we can minimize the effect of het-
erogeneity by partitioning the NN computation into coarse-
grained subgraphs that may still benefit from the compiler
graph-level optimizations.

IV. COMPILER-AWARE HETEROGENEOUS DNN
INFERENCE

DUET allows DNN inference to take advantage of hetero-
geneous hardware present in modern servers by encapsulating
heterogeneity and CPU-GPU parallelism. DUET is composed
of three major parts, as shown in Figure 6. The input of DUET
is a pre-compiled DNN model. The first part is a coarse-
grained graph partitioner, which divides the DNN computation
graph into multiple subgraphs that still allow DL compiler to
apply graph-level optimizations. The second part is a compiler-
aware profiler, which is responsible for providing the runtime
execution statistics of subgraphs based on compiler optimized
code on target devices. The third part is a profiling-based
online subgraph scheduler, which maps subgraphs to their
specialized hardware based on the actual run time.

A. Coarse-Grained Multi-Phase Graph Partitioning

DNN inference computations is often transformed into
compiler-specific IRs, in the form of directed acyclic graphs
(DAG). For a given DAG G, each node v; € G is an
operator (e.g., matmul, softmax) in the DNN, and each edge
(vi,vj) € G establishes a dependency between the output of
operator v; and the input of operator v;. A valid execution

(DUET)
Sl 52 Sn
Partiti Ol
artitioner IO B |- Sj
[|
v
Compiler-aware Micro-benchmark
Profiler O
v
Sl Sz Sn
Subgraph — O -
Scheduler |CHMN T |
. J
Heterogeneity-aware
I execution plan
(Compiler optimization)
L (graph-level, low-level))
~
Code CPU GPU
4 * N
Runtime | CPU [«—{ GPU| Sync

Fig. 6. The DUET Architecture.

schedule of the DAG determines an execution order of its
nodes that satisfies all the dependencies.

In this work, we consider those valid schedules that are
composed of phases: A phased schedule executes a DAG in a
sequence of phases S1, 52,93, ..., 5%, ..., where each phase S,
represents a non-overlapping subset of nodes and S =, S;
consists of all nodes. There is a total ordering between phases
such that if ¢ < ¢/, then all nodes in S; must be executed
before Sy. We further divide a phase into two categories: i)
If a phase consists of a subgraph with a sequential chain of
operators, we call it a sequential phase. ii) Otherwise, if a
phase contains multiple independent subgraphs, we call it a
multi-path phase. Phases can be either sequential or multi-
path, and phase_type(S;) != phase_type(S;+1). Figure 7 shows
an example of a schedule with three phases, where S; and S
are sequential phases and S5 is a multi-path phase.

According to the definition of the phased schedule, DUET
partitions a DAG into multiple subgraphs'. A schedule S on a
coupled CPU-GPU architecture includes a mapping for each

IPlease note that it is possible to have a nested partition of subgraphs.
However, doing so will decrease the computation granularity and incur more
CPU-GPU communication overhead. For simplicity, we assume a one-level
partition scheme, and we leave multi-level partitioning as future work.

Fig. 7. The multi-phase execution schedule.

subgraph to either CPU or GPU while satisfying dependencies.
Our goal is to find a parallelization schedule S such that the
per inference time is minimized.

When doing partitioning, we note that there are cases where
multiple nodes consume the same input, i.e., a shared node
in the DAG. We handle this situation by creating replicated
placeholders in different branches but let them all point to the
same input stream.

B. Profiler for Compiler-Optimized Subgraphs

Existing DL frameworks such as TensorFlow provides pro-
filers to profile model execution time. However, these profilers
assume a general, non-optimized compiler, and the profiled
statistics are quite different from the true statistics from com-
piler optimized code, which do not help make informed deci-
sions. Low-level profilers are provided by NVIDIA’s nvprof [4]
or Intel’s VTune [2]. However, these are at the hardware
and kernel execution level, which do not easily map to the
execution of DNN subgraphs.

To obtain accurate execution time of each subgraph in the
DAG, we take an end-to-end approach and build a profiler
for compiler-optimized subgraphs. For a given subgraph, the
profiler builds a micro-benchmark by treating that subgraph
as a standalone DNN model and going through the DL com-
pilation pipeline, including generating the target-dependent
code through the back-end. The profiler then runs each micro-
benchmark on both CPU and GPU for several runs and records
the information, including start and end time, the input/output
data size, as well as the device running it. The execution time
helps improve the scheduling decision. The input/output data
size helps analyze the communication overhead. We note that
profiling is only done during the offline phase and is therefore
a one-time cost.

C. Greedy-Correction Subgraph Scheduling and Mapping

Given the profiling results, the next step decides how to
map each subgraph to CPU and GPU. To better tackle the
unpredictable variations at run time, we introduce a profiling-
based online scheduling scheme: greedy-correction, where
DUET prioritizes the subgraphs in the critical path of the DAG
and then corrects the decision based on the actual running
time. The approach consists of three steps:

Time

>
GPU: 1,35]
CPU:2,4,5 pajsy []6Pu memcpy
\ \ X
Swap Wz::;;ed' | i I Gru computing
I
] .
GPU: 1,3,5 ,' i | EZdcPu computing
CPU:2,4,6 2 alle
o
Reduced
time

Fig. 8. The greedy-correction scheduling for a case of concurrently executing
multiple subgraphs on CPU and GPU.

Step 1. Placing the critical path on the fastest device(s).
The critical path is the path in the dataflow graph that has the
longest computation time from source to sink vertex. Speeding
up the processing of the critical path, therefore, would speed
up the overall computation time of the dataflow graph. For
each subgraph in the sequential phase, DUET prioritizes to
select the device (e.g., between CPU and GPU) that the
subgraph has a faster execution time to be on the critical
path. For subgraphs within a multi-path phase, we select the
shortest execution time between CPU and GPU as the cost of
a subgraph, and add the subgraph that has maximum cost in
that phase to the critical path.

Step 2. Greedily placing remaining subgraphs to CPU
and GPU. At this step, we sort the subgraphs by their
execution time on different devices. Then, for each indepen-
dent subgraph in a multi-path layer, we make the placement
decision in the order of the sorted subgraphs list. In each
iteration, we place the subgraph to the device that minimizes
the increase of the critical path.

Step 3. Correcting the placement decision by considering
the communication cost. The first two steps provide an initial
placement, but it might not be optimal because it does not
consider the potential added communication overhead. In this
step, we refine the previous decisions by performing series of
experiments to understand which subgraph should be placed
on which device, and how to arrange the computations so that
the communication is optimized. In particular, we use iterative
refinement to fine-tune the placement, in a way that swapping
the subgraphs from one device to another to minimize the
execution time. Figure 8 shows an example of an initial sub-
graph placement of GPU = {1,3,6} and CPU = {2,4,5}. The
algorithm maintains and improves a schedule, In one pass, the
algorithm selects a pair of subgraphs (6,5) in GPU and CPU so
that switching the paired subgraph from one side of the device
to the other will optimize the performance (e.g., by avoiding
some excessively high communication overhead between CPU
and GPU). Notes that one of the subgraphs could be empty,
which represents moving only a single subgraph to the other
side. The correction step terminates when x round of swaps
are performed without decreasing the execution time.

Note that we perform the third step for each multi-path
layer, so it may need to run multiple times as we may have

several multi-path layers in a model. Algorithm 1 provides the
details of the subgraph scheduling. We remark that this idea of
subgraph refinement is similar to the Kernighan-Lin refinement
in existing literature on graph partitioning, which dates back to
1970’s [27]. Different from KL refinement, which finds equal-
sized subsets with the minimal edge-cut, the criterion we use
is to minimize latency. We also note that it is possible to an-
alytically decide the placement strategy based on the profiled
subgraph computation and communication cost, similar to the
dynamic programming based method [24]. However, profiling
communication in existing DL frameworks often introduces
estimation errors, due to potential inefficiencies or unexpected
behavior [33]. Therefore, we take an approach that refines the
subgraph placement based on actual end-to-end latency.

D. Executor

Once the scheduling decision has been made, DUET in-
stantiates an executor to run the decided schedule, as shown
in Figure 9. The executor spawns two child processes to run
compiled subgraphs concurrently on CPU and GPU 2. Each
process works in a busy loop: it polls for input data from
its own synchronization queue, executes the corresponding
subgraph, and triggers the subgraph’s dependencies. The syn-
chronization queue is implemented as a shared memory queue
for high efficiency.

V. IMPLEMENTATION

DUET is built on top of TVM [12]. The main reasons for
choosing TVM are its wide adoptability for DL inference
optimization and its support for multiple DL frameworks.
However, the implementation can also be migrated to other
deep learning compilers.

TVM uses Relay as an intermediate representation, which
is a pure, expression-oriented language and employs the BNF
Grammar [37], as shown in Listing 1. To facilitate graph
partitioning and to debug, we perform a translation of this
representation to an adjacency-list representation, as shown in
Figure 10. In particular, we iterate the Relay IR using the
visitor pattern and obtain the inputs/outputs of each operator
to build a graph with adjacency-lists. We apply phased parti-
tioning against this adjacency-list graph, and we translate the
subgraphs back to a sequence of Relay statements, which can
be readily optimized through the TVM compiler.

VI. EVALUATION
A. Experiment Setup

Environment. Our evaluation is conducted on a server with
a 2.10 GHz Intel(R) Xeon(R) Gold 6152 CPU processor and
an NVidia TITAN V GPU, connected through PCle V3.0
interconnect. The server has 128GB RAM, running 64-bit
Linux Ubuntu 16.04.

2Please note that it is possible to further improve the performance by
allowing multiple subgraphs to execute concurrently within one device (e.g.,
CPU). For simplification, we assume a sequential execution of subgraphs on
CPU, because the small number of cores can be largely occupied by most
subgraphs.

Algorithm 1 Subgraph scheduling algorithm
Input: A set of subgraphs obtained through the graph
partitioning method described in Section IV-A.

Output: Fine-tuned subgraphs placement Sy, and Sgp.
Step 1: Placing the critical path on the fastest device.
Step 2: Greedily placing the remaining subgraphs to CPU
and GPU.
Step 3: Refining the subgraph placement decision. For
each multi-path phase, assume that the subgraphs are
separated into sets Scp,(subgraphs placed to CPU) and
Sgpu(subgraphs placed to GPU),
To1q < measure_latency(Scpu, Sgpu)
do

gain <0

S Sepus S?

cpu gpu <~ Sgpu

while S/, # 0 or S, # 0 do

gpu

find swapping pairs of subgraphs (s; € Sépu,sj €

S4pu or movement of individual subgraph) that maximize

the reduction of the expected latency

Sépu — Sépu — 85, S;pu — S;pu — 5
Thew < measure_latency(Scpy — i+ 55, Sgpu — 55+
5i)
if 10,00 < Ty1q then
Scpu «— Scpu —8; + Sj
Sgpu = Sgpu + 8i = 8j
Told — Tnew
end if
gain < max(Toq — Thew, gain)
end while

while gain > 0

Workloads. The experiments compare the inference speed
on three neural networks. The first one is Wide-and-Deep
Network [13], which is trained with wide linear layers and
deep neural networks together and can simultaneously have
the benefits of memorization and generalization as well as
heterogeneous contents encoding, with a lot of applications in
recommender systems [16], [22], [48]. We choose the open-
sourced PyTorch implementation based on [7], which has a
structure that consists of wide linear layer, FFN, RNN, and
CNN, as shown in Figure 2.

The second is Siamese Network [31], which is a neural net-
work with two independent RNN branches used for similarity
ranking (e.g., similarities between queries and passages). We
choose the TensorFlow implementation from [1].

The third one we use is a Transformer-based neural network
called MT-DNN [29]. The model is used for natural language
understanding. It has a shared layer that consists of a lexicon
encoder and a multi-layer bidirectional Transformer encoder.
It then has an arbitrary number of task-specific output layers,
which are independent from each other, as shown in Figure 3.

Table I shows the model parameters used for the evaluation.
We choose batch size of 1 to represent a common case in DNN
inference. For RNNs, sequence lengths refer to maximum
sequence length. To make reliable measurement, we run each

() Listing 1. Example of Relay expressions V Shape—(14) |
_TMO(ﬁ__‘ fn (%Const: Tensor[(l, 2)], @ Tl .
| CUDA %Const_1: Tensor[(2, 1)], EN ' Tensor |
Host] e —— Kernels %Const_2: Tensor[(1, 2)], = !] operator |
Code I grap I TR %COHS[_3 - Tensor [(2 R 1)]) | nn.densel | | nn.dense2 |I__.>.Eaiaﬂolvll
| [scheaine |1 | oitime —> Tensor[(1, 1)] {] o]
L synchronization | | 0 %0 = transpose(%Const_1, axes=[1, 0]); 2 -
- T oA . %1 = nn.dense(%Const, %0); é é
CPU &:) GPU %2 = transpose(%Const_3, axes=[1, 0]); @ @
%3 = nn.dense(%Const_2, %2);
add (%1, %3) Fig. 10. An example of trans-
Fig. 9. The heterogeneous execution engine. 1 lated graph representation.
Model Parameters Subgraph Comp. Time Placement
Wide: —input_wide (1,363) CPU GPU | CPU GPU
. FFN: —input (1,13); —embedding 192; -—hidden Wide 0.03 0.05 v
Wide-and-Deep | 115564 Wide-and FEN 007 007 v
CNN: —input (1,3,224,224); ~model ResNet-18 Delef)_an . RNN 24 64 | v
RNN (stacked LSTM): —input (1,80); —num_layers CNN 14.9 0.9 v
2; —hidden 64 merge 0.03 0.06 v
Siamese Network | 2 Stacked LSTM: —input (1,64); —sequence_length Siamese merge3 0.03 0.05 v
64; —num_layers 2; —hidden 128 Network Stacked-RNN-1 2.74 3.22 v
MT-DNN Stacked LSTM: —embedding 768; —sequence_length Stacked-RNN-2 272 3.24 v
32; —layers 2; —hidden 256 bert-base 289.7 7.8 v
Num_tags (10 CRF): 29,3,3,7,9,11,9,25,7,13 LSTM_CRF-1 3.18 2.04 v
TABLE T LSTM_CRF-2 3.21 2.03 v
THE MODEL PARAMETERS OF WIDE-AND-DEEP, SIAMESE, MT-DNN. LSTM_CRF-3 3.2 2.03 v
LSTM_CRF-4 3.19 2.05 v
MT-DNN LSTM_CRF-5 3.18 2.03 v
LSTM_CRF-6 3.19 2.04 v
. . . LSTM_CRF-7 3.17 2.05 v
configuration 5000 times to report average and tail latency, LSTM CRF-8 318 2.04 v
with the warm-up time excluded. LSTM_CRF-9 319 2.03 v
Comparison framework. We compare the performance LSTM—CRF'IOT ABSEZH 2.04 v

with TVM, which is widely accepted as the state-of-the-art
compiler for DNN inference, on both CPU and GPU. We also
include comparison with the original PyTorch [32] or Tensor-
Flow [10] implementation. We let the framework to decide the
appropriate number of threads used for computation.

B. DNN Inference Performance Comparison

Figure 11 shows the execution time of different models
by PyTorch/TensorFlow, TVM, and DUET. We make the
following observations. First, DUET achieves 1.5-2.3 times
and 1.3-15.9 times speed-ups compared with TVM-GPU and
TVM-CPU, respectively. DUET achieves speed-ups because
it optimizes by leveraging the computation power from both
CPU and GPU. Second, DUET is significantly faster than
the inference time using existing DL frameworks, achieving
2.1-8.4(on GPU) times and 2.3-18.8(on CPU) times speed-
ups than TensorFlow/PyTorch on GPU and CPU, respectively.
DUET offers much higher performance improvements than
DL frameworks, because it combines heterogeneous execution
with DL compiler optimizations to maximize the gains on
CPU-GPU.

Computation cost breakdown and placement decisions.
To see why DUET obtains speed-ups compared with using
just GPU or CPU, Table II shows the computation cost
(column 3 and 4) and final scheduling decision (column
5 and 6) of subgraphs (column 2) from the three models.
The computation cost is collected through the DL compiler-
aware profiler (Section IV-B), where a fixed, small number

COMPUTATION COST AND DEVICE PLACEMENT DECISIONS.

of profiling runs (e.g., 500) is sufficient to obtain statistically
stable measurement. As shown, in the first line of Table II, For
Wide-and-Deep, the RNN subgraph takes 2.4ms on CPU but
6.4ms on GPU, while the CNN subgraph takes 14.9ms on CPU
but only 0.9ms on GPU. Due to this heterogeneity compute
pattern, running the model either on CPU or GPU entirely does
not lead to the optimal latency. In contrast, DUET exploits
hardware heterogeneity and place subgraphs to their suitable
hardware, which minimizes the overall end-to-end latency.

Tail latency. For online inference, tail latency is as im-
portant, if not more, as the mean latency. To see if DUET
provides steady speed-ups, we collect the 50th (P50), 99th
(P99), and 99.9th (P99.9) percentile latency at batch size 1
from running TVM-GPU and DUET on the three models, as
shown in Figure 12. The results show that in most cases, the
P99 and P99.9 latencies only increase moderately, and DUET
obtains 1.3-2.4 times and 1.1-2.1 times speed-ups against
TVM-GPU at P99 and P99.9, respectively. The speed-ups at
P99.9 is slightly smaller, especially for MT-DNN, because
the CPU-GPU interconnect communication adds additional
performance variation.

400 3922

150 I PyTorch/TF(CPU)
@ PyTorch/TF(GPU)
gsoo I TVM(CPU)
T 250 |8 TVM(GPU)
_'g I DUET
— 200
S
5150
19
Q
35 100
50
0

MT-DNN

Fig. 11. The end-to-end latency of different frameworks on Wide&Deep,
Siamese and MT-DNN model.

30 28.3 28.7
B 50th, TVM
25| EEE 50th, DUET
n B 99th, TVM
E 50! mmm 99th, DUET
g B 99.9th, TVM
Els BN 99.9th, DUET
210
(7]
o
5

Siamese

Wide-and-Deep

Fig. 12. The comparison of 55th, 99th, 99.9th percentile latencies between
TVM(GPU) and DUET (CPU-GPU) on Wide-and-Deep, Siamese network,
and MT-DNN.

C. Comparison of Scheduling Algorithms

In this part, we evaluate the effectiveness of DUET’s
subgraph scheduling algorithm by comparing the following
schemes:

o Random: randomly assigns a subgraph to devices.

« Round-Robin: assigns subgraphs to CPU and GPU alter-
natively.

o Random + Correction: first randomly assigns subgraphs
and then performs the correction (step 3) as described in
Section IV-C.

o Greedy + Correction: our scheduling algorithm described
in Section IV-C.

We use Wide-and-Deep as an example. Fig. 13 presents
the model execution time from the above schedules. We
observe that both Round-robin and Random scheduling yield
relatively higher execution time than the two correction-based
scheduling algorithms. This is expected as the former two
schedule subgraphs in an arbitrary topological order, where
a global optimization strategy cannot be imposed. In contrast,
the two correction-based scheduling algorithms yield much
lower execution time, because they make subgraph place-
ment decisions by taking into account the execution time of
subgraphs and GPU-CPU communication cost. We choose
greedy-correction because the greedy placement provides a
good initialization for the correction algorithm, which requires

=
oo

16 16.6
214
T 12
_E 10 10.2
s 8
36
X 4
w 29 2.9 29
; H B N
0
in ion 3 \
Rou“d'%b‘ P\aﬂdoﬂ\ correct© _coﬂed\on \ded
Ra“do\'\" G\.eed‘l
Fig. 13. The comparison of execution time with different scheduling algo-
rithms.

fewer iterations for the correction algorithm to converge.
To verify the correctness of our scheduling algorithm, we
enumerate all possible schedules (which may not be always
feasible given that finding the optimal schedule is NP-hard) to
find the exact optimal schedule (Ideal). We empirically show
that the greedy-correction methods finds the optimal schedule,
at least when the number of subgraphs is relatively small.

D. Evaluation of Model Variations

In practice, model scientists may constantly experiment with
new model architectures, e.g., varying depths of a model,
and it is important to have the agility to adapt to different
architectures for DNN inference optimization. In this part, we
evaluate how DUET performs when the model architecture of
Wide-and-Deep changes.

Varying the stacked RNN layers. Figure 14 shows the
comparison of the execution time, varying the number of
stacked RNN to have 1, 2, 4, 8 layers. Compared with
TVM-GPU and TVM-CPU, DUET achieves 2.3-2.5 times
and 2.9-9.8 times speed-ups, respectively. The execution time
of all configurations increases as the number of RNN layers
increases, but the execution time on GPU increases more
substantially. This is because RNN is relatively slow to execute
on GPU. With GPU only, RNN computation becomes a
dominant part of the execution time, creating a performance
bottleneck as the RNN layers keep increasing. On the other
hand, both TVM-CPU and DUET have a relatively slower
increase in execution time as the stacked RNN increases its
depths. However, DUET achieves a much lower execution time
because it maps the CNN computation, which is slow to run
on GPU, to GPU, resulting in overall reduced execution time.

Varying the CNN depths. Figure 15 shows the execution
time of the same network, but varying the depth (e.g., 18,
34, 50, 101) of the ResNet encoder. This time, TVM-CPU
observes a much larger latency increase as the ResNet in-
creases its depth. This is because ResNet dominates the total
execution on CPU. For DUET, the execution time remains
almost the same when the depth of the ResNet is relatively
small (e.g., 18, 24). This is because when CNN is shallow,
the RNN computation on the CPU side dominates the total
execution time, which can hide the computation of CNN on
the GPU side. As the depth of ResNet keeps increasing, the

I TVM(CPU)
EE TVM(GPU)
m DUET

N
w

N
o

17.6

=
o

Execution Time(ms)
=
w

w

1-layer 2-layer 4-layer

8-layer

Fig. 14. Inference latency and speedup on Wide&Deep Model with different
layers in the RNN component.

713

70| mEE TVM(CPU)

60 [TVM(GPU)
i N DUET
£
< 50
'E 40 401
c 34.2
o
530
o
% 19.2
3520

12.2
10 70 7.6 28 7.0

ResNet-18

ResNet-34 ResNet-50 ResNet-101

Fig. 15. Inference latency and speedup on Wide&Deep Model with different
layers(18/34/50/101) in the CNN component.

execution time of both TVM and DUET starts to slowly in-
crease, because as ResNet starts to dominate the computation,
there are not enough parallel subgraphs to utilize both CPU
and GPU simultaneously, resulting CPU being idle while the
execution time on the GPU side keeps increasing.

Varying the FFN depths. Figure 16 reports the comparison
of the execution time, varying the number of hidden layers in
FFN. As shown, the execution time does not change much as
we increase the FFN depths. This is because FFN consists of
mostly GEMMs, which have been highly optimized on both
CPU and GPU. As a result, FFN only takes a very small
amount of execution time despite its hidden depth increases.

Varying the batch sizes. Another factor that may affect
the effectiveness of DUET is the batch size of the input data.
Since TVM does not support dynamic batch size yet, we
freeze the model with a fixed batch size range from 2, 4, 8§,
16, 32. Overall, as shown in Figure 17, the speed-ups from
DUET are more pronounced when the batch size is small (e.g.,
1.5 times speed-up at batch size 2) but gradually diminish
as the batch size increases, compared with TVM-GPU. This
is expected, because GPU is overall more suitable for large
batch execution. However, as discussed earlier, batch size is
often rather small for inference scenarios due to the stringent
latency target.

N DUET

I TVM(CPU)

8 TVM(GPU)

N
o

=
wv

Execution Time(ms)
” S

FFNO

[128,64]

FFN1

[128,64,32]

FFN2

[128,64,32,16]

FFN3

(128,64,32,16,8]

Fig. 16. Inference latency and speedup on Wide&Deep Model with different
config in the Deep component.

624.3

600{ HEE TVM(CPU)
[TVM(GPU)
5001 BB DUET

N
o
o

Execution Time(ms)

Fig. 17. Comparison of different configurations with different batch sizes.

E. Applicability to Traditional Models

So far, we have evaluated DNN workloads with complex
structures that exhibit heterogeneity where existing DNN
frameworks are less efficient to optimize. One may concern
about how DUET would perform for existing models that
have been well-optimized on a specific hardware. We conduct
experiments on ResNet [17] and the results are shown in
Table III. As shown, DUET offers the same performance as
the best performing baseline, which is TVM-GPU in this case.
This is expected, because not only ResNet has a relatively
sequential structure but it also consists mostly of CNNs, which
have been heavily optimized by TVM on GPUs. Given that
the model is mostly sequential and does not present much
heterogeneity, its partitioned subgraphs cannot be executed in
parallel efficiently because it introduces additional communi-
cation overhead and the CPU does not make CNNSs run faster.
In this case, DUET falls back to the single-device execution
mode and simply chooses the device where the model runs
the fastest.

PyTorch-CPU|PyTorch-GPUTVM-CPU[TVM-GPUDUET]

17.4 2.2 15.8 1 1
TABLE 1L
THE END-TO-END LATENCY ON RESNET-18.

Time(ms)

VII. RELATED WORK

DUET offers a solution that enables (i) heterogeneous
execution, with compiler-aware subgraph scheduling, for (2)
DNN inference. As such, we discuss the related work from
these two independent research directions.

Heterogeneous DNN computation. Prior work studies us-
ing CPU memory as an extension of GPU memory to increase
memory capacity for DNN workloads [18], [21], [25], [34],
[36], [42]. However, most of these work target at optimizing
the training process, such as improving the training throughput
with larger model/batch sizes, whereas DUET focuses on
optimizing the DNN inference, where latency is the most
important metric and batch size is often just 1.

Mirhoseini et. al. [30] proposed to use reinforcement learn-
ing to learn efficient operator schedules for model parallelism.
However, the scheduling is performed at the operator-level and
assumes a general, non-optimized compiler, which prevents
many graph-level compiler optimizations such as fusion. The
use of RL, which requires to train a complex policy network
with hyperparameter tuning, also makes it difficult to apply
in practice. In contrast, DUET schedules computation at the
subgraph-level, which simplifies the design space, while still
allowing the DNN compiler to apply the majority of graph-
level optimizations, increasing the computation efficiency on
a single device.

In a more general context, heterogeneous computing has
been studied to make well-orchestrated use of heterogeneous
hardware to execute various application [26], [45]. While
DUET is inspired by those prior works, unlike them, it is
specially tailored for reducing the execution time of DNN
inference.

DNN inference. There has been work on optimizing DNN
inference through platforms, libraries, and compile-time strate-
gies. Several platforms have been built to facilitate the deploy-
ment of DNN models, such as TensorFlow Serving [8], Ten-
sorRT [5], ONNXRuntime [6]. To the best of our knowledge,
these platforms do not support heterogeneous DNN inference
yet, and DUET can be integrated with these platforms to
exploit concurrent execution opportunities on multiple devices.

There are libraries for accelerating DNN inference for a
specific type of hardware, such as cuDNN [14] and MKL-
DNN [3]. DUET can be combined with these libraries by
incorporating them as a back-end. Finally, DUET serves as
a middleware in between DL frameworks and a DNN com-
piler [9], [12], [38], [41], which allows an existing DNN to
benefit from hardware heterogeneity.

VIII. CONCLUSION

Although DL compilers produce highly optimized code for
individual hardware devices, a drawback is that they miss
opportunities to allow DNNs to benefit from the aggregated
computation power of CPU and GPU. We introduce DUET,
a DNN inference engine that allows DNNs to explore po-
tential concurrent execution opportunities on coupled CPU-
GPU architecture. Powered by the coarse-grained graph parti-
tioning, compiler-aware profiling, and a profiling-based online

subgraph scheduling algorithm, DUET greatly decreases the
end-to-end inference latency for DNNs that exhibit complex
model structures and diverse computation patterns. We hope
this work will encourage additional studies of heterogeneous
execution on the DNN model online serving.

ACKNOWLEDGMENT

The authors appreciate the anonymous IPDPS reviewers for
providing very constructive and useful feedback, which has
significantly helped improving the quality of this paper.

REFERENCES

[1] Deep LSTM siamese network for text
https://github.com/dhwajraj/deep-siamese-text-similarity.

similarity.

[2] Intel vtune. hhttps://software.intel.com/content/www/us/en/develop/tools/vtune-

profiler.htmll.

[3] Intel(R) Math Kernel Library for
https://github.com/01org/mkl-dnn.

[4] Nvidia nvprof. https://docs.nvidia.com/cuda/profiler-users-
guide/index.html.

[5] NVIDIA TensorRT. https://developer.nvidia.com/tensorrt.

[6] Onnxruntime. https://github.com/microsoft/onnxruntime.

[7]1 pytorch-widedeep. https://github.com/jrzaurin/pytorch-widedeep.

[8] TensorFlow Serving. https://www.tensorflow.org/serving/.

[9] The Accelerated Linear Algebra Compiler
https://www.tensorflow.org/performance/xla/.

[10] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. Tensor-
Flow: A System for Large-scale Machine Learning. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI 16, pages 265-283, 2016.

[11] Tianqgi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:
A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: an automated
end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages 578-594, 2018.

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain,
Xiaobing Liu, and Hemal Shah. Wide deep learning for recommender
systems. In Proceedings of the Ist Workshop on Deep Learning
for Recommender Systems, page 7-10, New York, NY, USA, 2016.
Association for Computing Machinery.

[14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient
Primitives for Deep Learning. arXiv preprint arXiv:1410.0759, 2014.

[15] Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv preprint arXiv:1412.3555, 2014.

[16] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiugiang He,
and Zhenhua Dong. Deepfm: An end-to-end wide & deep learning
framework for CTR prediction. CoRR, abs/1804.04950, 2018.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, pages 770-778, 2016.

[18] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and
Venkatesh Akella. Autotm: Automatic tensor movement in heteroge-
neous memory systems using integer linear programming. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’20, 2020.

[19] Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735-1780, 1997.

Deep Neural Networks.

Framework.

[20

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28

[29]

[30]

[31]

(32]

[33

[34]

Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, and Bo Wu.
GRNN: low-latency and scalable RNN inference on gpus. In George
Candea, Robbert van Renesse, and Christof Fetzer, editors, Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden, Germany, March
25-28, 2019, pages 41:1-41:16. ACM, 2019.

Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swapping. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’20, page 1341-1355, New York, NY, USA, 2020. Association for
Computing Machinery.

Zhenhua Huang, Guangxu Shan, Jiujun Cheng, and Jian Sun. Trec:
an efficient recommendation system for hunting passengers with deep
neural networks. Neural Comput. Appl., 31(S-1):209-222, 2019.
Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level
Accuracy with 50x Fewer Parameters and <1MB Model Size. arXiv
preprint arXiv:1602.07360, 2016.

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring hidden
dimensions in parallelizing convolutional neural networks. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 2279-2288. PMLR, 2018.

Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He,
and Shaofeng Zhao. Layer-centric memory reuse and data migration for
extreme-scale deep learning on many-core architectures. ACM Trans.
Archit. Code Optim., 15(3), September 2018.

Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. Adaptive work
placement for query processing on heterogeneous computing resources.
Proc. VLDB Endow., 10(7):733-744, 2017.

Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for
partitioning graphs. Bell Syst. Tech. J., 49(2):291-307, 1970.

Cheng Li, Abdul Dakkak, Jinjun Xiong, and Wen-mei Hwu. Benanza:
Automatic pbenchmark generation to compute” lower-bound” latency
and inform optimizations of deep learning models on gpus. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 440-450. IEEE, 2020.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng, Xueyun Zhu, Em-
manuel Awa, Pengcheng He, Weizhu Chen, Hoifung Poon, Guihong
Cao, and Jianfeng Gao. The microsoft toolkit of multi-task deep neural
networks for natural language understanding. In Asli Celikyilmaz and
Tsung-Hsien Wen, editors, Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations,
ACL 2020, Online, July 5-10, 2020, pages 118-126. Association for
Computational Linguistics, 2020.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. Device placement optimization with reinforce-
ment learning. In Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pages 2430-2439, 2017.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text
similarity with Siamese recurrent networks. In Proceedings of the Ist
Workshop on Representation Learning for NLP, pages 148—157, Berlin,
Germany, August 2016. Association for Computational Linguistics.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 8024-8035, 2019.
Carl Pearson, Abdul Dakkak, Sarah Hashash, Cheng Li, I-Hsin Chung,
Jinjun Xiong, and Wen-Mei Hwu. Evaluating characteristics of CUDA
communication primitives on high-bandwidth interconnects. In Varsha
Apte, Antinisca Di Marco, Marin Litoiu, and José Merseguer, editors,
Proceedings of the 2019 ACM/SPEC International Conference on Per-
formance Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019,
pages 209-218. ACM, 2019.

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. Capuchin: Tensor-based gpu memory

[35]

[36]

(371

[38]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

management for deep learning. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS °20, page 891-905, New
York, NY, USA, 2020. Association for Computing Machinery.
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, pages 519-530, 2013.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfigar, and
Stephen W. Keckler. vdnn: Virtualized deep neural networks for scalable,
memory-efficient neural network design. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-49, 2016.
Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa
Kirisame, Tianqi Chen, and Zachary Tatlock. Relay: a new IR for
machine learning frameworks. In Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, pages 5868, 2018.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman
Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Nadathur
Satish, Jakob Olesen, Jongsoo Park, Artem Rakhov, and Misha Smelyan-
skiy. Glow: Graph lowering compiler techniques for neural networks.
CoRR, abs/1805.00907, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015.

Raphael Tang, Ashutosh Adhikari, and Jimmy Lin. Flops as a direct
optimization objective for learning sparse neural networks. CoRR,
abs/1811.03060, 2018.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, An-
drew Adams, and Albert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-
wen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons: Dynamic
gpu memory management for training deep neural networks. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’18, page 41-53, New York,
NY, USA, 2018. Association for Computing Machinery.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-
hury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill
Jia, et al. Machine learning at facebook: Understanding inference at
the edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 331-344. IEEE, 2019.

Saining Xie, Ross B. Girshick, Piotr Dolldr, Zhuowen Tu, and Kaiming
He. Aggregated residual transformations for deep neural networks. In
2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 5987-5995.
IEEE Computer Society, 2017.

Jilong Xue, Zhi Yang, Shian Hou, and Yafei Dai. When computing meets
heterogeneous cluster: Workload assignment in graph computation. In
2015 IEEE International Conference on Big Data, Big Data 2015, Santa
Clara, CA, USA, October 29 - November 1, 2015, pages 154—-163. IEEE
Computer Society, 2015.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and
Nitesh V. Chawla. Heterogeneous graph neural network. In Ankur
Teredesai, Vipin Kumar, Ying Li, Romer Rosales, Evimaria Terzi,
and George Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 793-803.
ACM, 2019.

Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He.
Deepcpu: Serving rnn-based deep learning models 10x faster. In
Haryadi S. Gunawi and Benjamin Reed, editors, 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-
13, 2018, pages 951-965. USENIX Association, 2018.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based
recommender system: A survey and new perspectives. ACM Comput.
Surv., 52(1):5:1-5:38, 2019.

