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ABSTRACT
Continual Learning (CL) is an emerging machine learning para-
digm in mobile or IoT devices that learns from a continuous stream
of tasks. To avoid forgetting of knowledge of the previous tasks,
episodic memory (EM) methods exploit a subset of the past sam-
ples while learning from new data. Despite the promising results,
prior studies are mostly simulation-based and unfortunately do not
promise to meet an insatiable demand for both EM capacity and
system efficiency in practical system setups. We propose CarM, the
first CL framework that meets the demand by a novel hierarchical
EM management strategy. CarM has EM on high-speed RAMs for
system efficiency and exploits the abundant storage to preserve
past experiences and alleviate the forgetting by allowing CL to
efficiently migrate samples between memory and storage. Exten-
sive evaluations show that our method significantly outperforms
popular CL methods while providing high training efficiency.
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1 INTRODUCTION
With the increasing demand for realistic on-device machine learn-
ing, recent years have witnessed a novel learning paradigm, namely
continual learning (CL), for training neural networks (NN) with
a stream of non-i.i.d. data. In such a paradigm, the neural net-
work is incrementally learned with insertions of new tasks [17],
i.e., learning new knowledge from new tasks over time while re-
taining previously learned knowledge. The training process in CL
resembles how intelligent systems operate in real world.

One significant challenge CL faces is the catastrophic forgetting,
i.e., knowledge learned in the past fading away as the model contin-
ues to learn new tasks [15]. Among prior approaches to addressing
this issue, episodic memory (EM) is one of the most effective ap-
proaches [3, 6, 7, 14, 16]. The basic idea of EM is to maintain a
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buffer that stores samples collected in the past and replays them
periodically while training models with new samples. EM needs
to have a sufficiently large capacity to achieve a desired accuracy,
and such capacity in need may vary significantly since incoming
data may contain a varying number of tasks and classes at dif-
ferent time slots and geo-locations [2]. Although not discussed
in prior EM studies as they are mostly simulation-based, memory
is obviously the first choice to implement EM due to fast access
(50–150 ns) allowing timely model updates. However, in practice,
the size of EM must be quite small, bounded by limited on-device
memory capacity, especially on mobile and IoT devices. The limited
EM size makes it difficult to scale up to a large number of tasks,
preventing CL models from achieving high accuracy as training
moves forward. Alternatively, EM can be located in large storage
to store a significantly large number of old samples and use them
for greatly improving model accuracy. However, the storage incurs
slow access (25–250 `s), which is typically orders of magnitude
larger than the memory. Hence, directly accessing the storage often
incurs significant I/O overhead, which slows down training.

We introduce a hierarchical EM method, which enhances the
effectiveness of in-memory EM design. Our method is motivated by
the fact that modern computing devices are commonly equipped
with a deep memory hierarchy including both fast memory and
large storage. Provided by different hardware characteristics, our
method 1) accesses samples only inmemory during training, promis-
ing high-speed training, and 2) simultaneously leverages on-device
storage to exercise a large number of old samples, addressing the
forgetting problem. The goal of our work, Carousel Memory or
CarM, is to design a CL framework enhanced with 1) and 2), mak-
ing a step forward in bringing prior simulation-based studies to
practical system setups.

CarM stores as many observed samples as possible so long as
it does not exceed a given storage capacity and updates the in-
memory EM in the background while the model is learning with
samples already in EM. One key research question is how to man-
age samples across EM and storage for both system efficiency and
model accuracy. Here we propose a hierarchical memory-aware
data swapping, an online process that dynamically replaces a subset
of in-memory samples used for model training with other samples
stored in storage. The data swapping significantly improves the
effective EM size, mitigating forgetting issues by avoiding discard-
ing important samples overflowed from EM in limited size (as done
in existing single-level non-hierarchical EM methods). To fulfill
such effectiveness, we design CarM from two perspectives: swap-
ping mechanism (Section 3.1) and swapping policy (Section 3.2).
The swapping mechanism of CarM ensures that the slow speed
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of accessing the storage does not become a bottleneck of contin-
ual model training by carefully hiding sample swapping latency
through asynchrony. Moreover, we propose a swapping policy to
select samples to swap and incorporate it into the gate function.
The gate function selects a small set of important samples to swap,
making CarM match with low I/O bandwidth storage.

One major benefit of CarM is that it is largely complementary
to existing episodic memory-based CL methods. By exploiting the
memory hierarchy, we show that CarM helps boost the accuracy
of many existing methods and even allows them to retain their
accuracy with much smaller EM sizes (Section 4.1).

Interestingly, we find that some algorithmic optimizations may
need to be revisited to ensure that they are not actually at odds
with data swapping. We observe that knowledge distillation with
CarM might not be as effective as in prior work, because CarM opts
for direct training with explicit data rather than probability to learn
representation for old classes.

2 BACKGROUND AND RELATEDWORK
Class incremental learning. The performance of CL algorithms
heavily depends on scenarios and setups, as summarized by Van
de Ven et al. [19]. Among them, we are particularly interested in
class-incremental learning (CIL), where task IDs are not given dur-
ing inference [10]. CIL targets more challenging yet realistic CL
scenarios than the alternative approach called task-incremental
learning (TIL), which assumes task IDs are given during inference.
Many prior proposals in CIL are broadly divided into two categories,
rehearsal-based and regularization-based. In rehearsal-based ap-
proaches, episodic memory stores a few samples of old tasks to
replay in the future [2, 4, 5, 17]. On the contrary, regularization-
based approaches exploit the information of old tasks implicitly
retained in the model parameters, without storing samples repre-
senting old tasks [12, 13, 22]. As rehearsal-based approaches gen-
erally have shown the better performance in CIL [16], we aim to
improve the approaches by incorporating data management across
the memory-storage hierarchy.

The CIL setup usually assumes that the tasks contain disjoint
set of classes [4, 10, 17]. More recent studies introduce methods to
learn from the blurry stream of tasks, where some samples across
the tasks overlap in terms of class ID [1, 16]. Moreover, prior works
can be classified as either offline [4, 5, 17, 21], which allows a buffer
to store incoming samples for the current task, or online [1, 9, 11],
which has no such buffer. The data management scheme that we
propose in CarM is applicable to all above setups and methods.
Rehearsal-based CIL problem. To illustrate the rehearsal-based
CIL problem, assume we have seen 𝑖 tasks {𝑇1, . . . ,𝑇𝑖 } so far. A task
𝑇 includes a subset of all classes𝐶 , denoted as𝐶 (𝑇 ) = {𝑐 |℧(𝑐) = 𝑇 },
where ℧(𝑐) performs a task assignment for a given class 𝑐 . Further,
the 𝑇 includes a finite number of samples 𝑥 and corresponding
labels 𝑦. The 𝐸𝑀 , given a limited capacity, maintains a subset of
old samples from previous tasks {𝑇1, . . . ,𝑇𝑖−1}. CarM additionally
maintains a larger pool of samples from the previous tasks in the
storage 𝐸𝑆 , capturing past experiences more accurately—𝐸𝑆 is inclu-
sive of 𝐸𝑀 . However, since old samples for training are still drawn
directly from in-memory 𝐸𝑀 , the training phase is forced to have
a boundary for sample selection restricted by the size of 𝐸𝑀 . The
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Figure 1: Architecture and execution stages of the CarM.

continual learning that optimizes model parameters \ for old and
new samples can hence to formulated as follows:

argmin
\

𝑖∑︁
𝑡𝑎𝑠𝑘 𝑖𝑑=1

𝐸 (𝑥,𝑦)∼𝐸𝑆∪𝑇𝑖 [𝐿(𝑓 (𝑥, \ ), 𝑦)],where (𝑥,𝑦) ∈ 𝐸𝑀.

3 CAROUSEL MEMORY
We describe how data swapping in CarM extends the current work-
flow of episodic memory (EM) in Figure 1. There are three common
stages involved in traditional EM methods, which proceed in or-
der: data incoming, training, and EM updating. This workflow
corresponds to many popular non-hierarchical EM methods includ-
ing TinyER [7], CBRS [8], iCaRL [17], BiC [21], and DER++ [3].
Then, we add two additional key stages for data swapping: storage
updating and storage sample retrieving.
• Data incoming I : When samples for a new task 𝑇𝑖 arrive,
they are first enqueued into a stream buffer and later exercised
for training. Different CL algorithms require different amounts of
samples to be enqueued for training. The task-level learning relies
on task boundaries, waiting until all 𝑇𝑖 ’s samples appear [17, 21].
On the contrary, the batch-level learning initiates the training stage
once a batch of𝑇𝑖 ’s samples in a pre-defined size is available [7, 18].

• Training T : The training combines old samples in EM with
new samples in a stream buffer to compose a bundle of training data.
Typically, in the task-level learning, a bundle is large and hence
partitioned into multiple mini-batches, whereas in the batch-level
learning, a bundle is small and hence constitutes itself a single
mini-batch. The mini-batch size and the ratio between old and
new samples within a mini-batch are configured by the learning
algorithm. Learners may take multiple epochs of training for a
given bundle, trading off computation cost for accuracy.

• EM updating M : Once the training stage is completed, sam-
ples in the stream buffer are no longer new and represent a past
experience, requiring EM to be updated with these samples. EM
may have enough space to store all of them, but if it does not, the
CL method applies a sampling strategy like reservoir sampling [20]
and greedy-balancing sampling [16] to select a subset of samples
from EM as well as from the stream buffer to keep in EM. Prior
works “discard” samples that overflow from the EM capacity.

• Storage updating S : CarM flushes the stream data onto the
storage before cleaning up the stream buffer for the next data in-
coming step. Therefore, data samples are preserved in storage as
long as the storage still has free space. However, if the storage
capacity is exceeded, we randomly choose samples to evict for each
class while keeping the in-storage data class-balanced.



• Storage sample retrieving R : With a large number of samples
maintained in the storage, data swapping replaces in-memory sam-
ples with in-storage ones during training to exercise abundant past
knowledge preserved in the storage. CarM collects various useful
signals for each in-memory sample used in the training stage and
determines whether to replace that sample or not. This decision
is made by our generic gating function that selects the samples for
replacement with effectively little runtime cost.

3.1 Minimizing Delay to Continual Learning
Accessing the slow storage could incur high I/O latency and slow
down the training process. The primary objective in our proposed
system design is thus effectively hiding I/O latency caused by the
data swapping so that CarM does not degrade the training speed. In
this section, we introduce two system optimizations that encompass
in-storage sample retrieval and EM updating stages.
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Figure 2: Training time re-
duction with async sample
retrieval.

Asynchronous sample re-
trieval. Similar to the conven-
tional learning practice, CarM
maintains fetch workers ded-
icated to pre-processing each
training sample, e.g., decoding
and augmentation. CarM has
a separate swap worker dedi-
cated to deciding in-memory
samples to evict and issuing I/O requests to bring new samples
from storage into memory. In the CL workflow, the data retrieval
stage 𝑅 has dependency on the training stage 𝑇 since training trig-
gers the replacement of an in-memory sample when it is used as
training input. To illustrate, let us assume that the system creates
𝑁 mini-batches from a bundle. The swap worker identifies sam-
ples in EM to be replaced from mini-batch 𝑖 training (𝑇𝑏

𝑖
) and then

issues I/O requests to retrieve other samples from storage (𝑅𝑏
𝑖
). If

we want to allow the next mini-batch training to exercise EM com-
pletely refreshed with the replaced samples, executions of 𝑇𝑏 and
𝑅𝑏 by definition must be serialized such that we have a sequence
of 𝑇𝑏

1 → 𝑅𝑏1 → 𝑇𝑏
2 → 𝑅𝑏2 → 𝑇𝑏

3 → 𝑅𝑏3 , as shown in Figure 2
(Sync). However, committing to such strict serialized executions
slows down training speed significantly, e.g., the second mini-batch
training 𝑇𝑏

2 can start only after finishing up 𝑇𝑏
1 → 𝑅𝑏1 , which takes

much longer time than𝑇𝑏
1 with no retrieval of storage data as done

in the traditional EM design. To prevent this performance degra-
dation, CarM adopts asynchronous sample retrieval that runs the
retrieval step in parallel with the subsequent training steps. By the
asynchronous method, we keep the minimum possible dependency
as shown in Figure 2 (Async), with an arbitrary 𝑅𝑏

𝑖
not necessarily

happened before 𝑇𝑏
𝑖+1. Apparently, this design choice poses a delay

on applying in-storage samples to EM, making it possible for the
next training steps to access some samples undergoing replacement.
However, we found such accesses do not frequently occur, and the
delay does not nullify the benefit that comes from data swapping.
Concurrency on EM. In addition, when the swap worker re-
trieves in-storage samples and writes on memory, it may interfere
with fetch workers that attempt to read samples from it for pre-
processing. To mitigate such interference, CarM could opt for EM

partitioning to parallelize read/write operations over independent
partitions. With EM partitioning, only those operations that ac-
cess the same partition need coordination, achieving concurrency
against operations that access other partitions.

3.2 Data Swapping Policy by a Gate Function
The gate function in Figure 1 allows CarM to select a certain por-
tion of samples to swap out from those EM samples drawn in the
training stage, providing a control knob for I/O traffic. The ability
of adjusting I/O traffic is crucial as on-device storage mediums have
different characteristics (e.g., high-bandwidth flash drive vs low-
bandwidth magnetic drive). At the same time, the gate is required to
be effective with such partial data swapping in terms of achieving
high accuracy in the subsequent training steps. To facilitate this,
we propose a sample scoring method that ranks the samples in the
same mini-batch and helps decide samples to swap against other
samples to keep further in memory.
Score-based replacement. The score quantifies the relative im-
portance of a trained sample to keep in EM with respect to other
samples in the same mini-batch. Intuitively, a higher score means
that the sample is better “not” to be replaced if we need to reduce
I/O traffic and vice versa. To this end, we define the gate 𝜎𝑖 as
𝜎𝑖 = 1(𝑠 (𝑥𝑖 ) > 𝜏) for sample 𝑥𝑖 , where 𝑠 (·) is a scoring function
and 𝜏 is a scoring threshold, with both 𝑠 (·) and 𝜏 between 0 and 1.
The threshold is determined by the proportion of the samples in a
mini-batch to be replaced from the EM. It allows data swapping to
match with I/O bandwidth available on the storage medium, and
prevents the system from over-subscribing the bandwidth leading
to I/O back-pressure or under-subscribing the bandwidth leaving
storage data exploited less opportunistically.
Policy. From several swapping policies we have explored, here
we introduce an entropy-based policy. This policy collects two use-
ful signals for each sample produced during training: prediction
correctness and the associated entropy. It prefers to replace the
samples that are correctly predicted because these samples may not
be much beneficial to improve the model in the near future. Further-
more, in this group of samples, if any specific sample has a lower
entropy value than the other samples, the prediction confidence is
relatively stronger, making it a better candidate for replacement. By
contrast, for the samples that are incorrectly predicted, this policy
prefers to “not” replace the samples that exhibit lower entropy, i.e.,
incorrect prediction with stronger confidence, since they may take
longer to be predicted correctly. Thus, the scoring function 𝑠 (𝑥𝑖 )
with a model 𝑓 (·) is defined as:

𝑠 (𝑥𝑖 ) =
1
2𝑢

[𝑔(𝑥𝑖 )𝐻 (𝑓 (𝑥𝑖 )) + (1 − 𝑔(𝑥𝑖 )) (2𝑢 − 𝐻 (𝑓 (𝑥𝑖 )))] ,

where 𝑔(𝑥𝑖 ) = 1(𝑓 (𝑥𝑖 ) = 𝑦𝑖 ), 𝐻 (·) is an entropy function, and 𝑢 is
the maximum entropy value. Note that we replace an EM sample
with an in-storage sample with the same class label to keep the
population in EM consistent across classes.

We highlight that although our major contribution for gating
mechanism is computational efficiency to match with available
on-device I/O bandwidth, designing more effective replacement
policies is a promising research direction that we are currently
exploring.



3.3 Impact of CarM on CL Algorithms Using
Knowledge Distillation

CarM is largely complementary to the existing methods and can
help improve their model accuracy by exploiting abundant in-
storage samples in the background. However, some algorithmic
features may not be compatible with our data-driven approach,
requiring their effectiveness under CarM to be revisited. We discuss
this aspect in the context of knowledge distillation (KD), which has
been adopted in several popular CL algorithms [3, 17, 21].

The key assumption of KD is that once a model is trained with a
task, the knowledge newly learned is supposed to generalize the task
well and can be effectively transferable to subsequent task training.
Specifically, during a model update with a new task, KD methods
exploit soft labels (i.e., classification probabilities over possible
classes) obtained from the previous model while replaying old
data. As recent KD methods (e.g., BiC [21] and DER++ [3]) further
combine soft labels and hard labels (i.e., ground truth) to update the
model for old data, the loss function of distillation-based methods
can be generally written as “𝛼×𝑠𝑜 𝑓 𝑡 𝑙𝑎𝑏𝑒𝑙 𝑙𝑜𝑠𝑠+𝛽×ℎ𝑎𝑟𝑑 𝑙𝑎𝑏𝑒𝑙 𝑙𝑜𝑠𝑠”,
where 𝛼 and 𝛽 are the weight coefficient on the corresponding loss
term. Note that the soft label loss is also called the distillation loss.

The potential drawback of using KD is that old models might not
be sufficiently generalized for old tasks. In this case, data swapping
in CarM can be used to further generalize old tasks by continuously
exercising abundant in-storage samples. However, data swapping
can be interfered by the knowledge distilled by the old models if
distillation losses are extensively used, i.e., training the current
model still heavily relies on the performance of the previous model.
In prior studies [3, 17, 21], the weight coefficient 𝛼 on the distillation
loss is either high or managed complicatedly. In Section 4.1, we
show that limiting 𝛼 to a small value delivers higher accuracy with
CarM for those methods.

3.4 Implementation Details
CarM is implemented on PyTorch for ease of use.
Swap worker. CarM implements the swap worker through multi-
processing in popular Python standard library. The swap worker
uses asyncio to asynchronously load samples from storage to mem-
ory, effectively overlapping high-latency I/O operations with other
CarM-related operations, such as image decoding, sample replace-
ment on EM, and entropy calculation. The swap worker issues
multiple data swapping requests without spinning on or being
blocked by I/O. As a result, it is sufficient to have only one swap
worker for CarM in the system.
Episodic memory. There are various ways to implement EM to be
shared between fetch workers and the swap worker. Currently, we
opt for implementing EM as a shared object provided by Manager
in the Python standard library (multiprocessing.managers), which is
based on message passing in the server-client semantics. In terms
of flexibility, the Manager does not require the clients (i.e., fetch
workers and the swap worker) to define the exact data layout in the
EM address space or coordinate for potential memory resizing to
accommodate raw samples of different sizes. Hence, it is sufficient
for the client workers to perform reads and writes on the EM using
indexes on the EM samples.

4 EXPERIMENTS
Experimental setup. We evaluate CarM on two computing de-
vices. Device 1 is a server equipped with a NVIDIA 2080 Ti GPU,
Intel Xeon Gold 6226 12 cores, and a 480 GB Intel SSD D3 drive.
Device 2 is a NVIDIA Jetson TX2 equipped with 256-core NVIDIA
Pascal GPU, Denver 64-bit 2 cores, ARM Cortex-A57 4 cores, and a
32 GB eMMC 5.1 drive. We use Device 1 for most of experiments
to evaluate CarM while varying memory sizes in use for episodic
memory. We use Device 2 to show CarM’s efficacy when running
on a real embedded AI computing device.

We compare CarM with three non-hierarchical EM setups: 1)
RAM-S manages old samples in RAM-based EM with limited size;
2) ST-S manages old samples directly in storage, using the same
capacity for EM used by RAM-S; and 3) ST-L manages old samples
in storage without the capacity constraint. CarM implements data
swapping on top of RAM-S. For CarM, we vary the amount of data
swapping to study the effectiveness of CarM in detail. Unless oth-
erwise stated, CarM-N means that our swap worker is configured
to replace N% of EM samples drawn by the training stage.
Workloads. CarM is applicable to a variety of EM-based CL meth-
ods. We select three methods that achieved the state-of-the-art
accuracy: BiC [21], DER++ [3], and RM [2]. BiC and DER++ are
knowledge distillation-based methods. BiC and RM correspond
to the task-level learning (that initiates training at a task bound-
ary), whereas DER++ corresponds to the batch-level learning (that
initiates training upon receiving a batch of new samples). These
methods are based on either ResNet or DenseNet neural networks,
with all using the SGD optimizer.

We cover a wide range of datasets including CIFAR subset—
CIFAR10 (C10/196.6MB) and CIFAR100 (C100/196.5MB)—, Ima-
geNet subset—ImageNet-100 (I100/46.8GB) and Tiny-ImageNet
(TI200/1.1GB)—, and ImageNet-1000 (I1000/139.3GB). EM sizes
tested in our experiments range from 3 MB to 13GB to represent
diverse memory specifications. Note that to keep the original ef-
fectiveness of the selected methods, we measure the performance
with and without CarM in the methods of their own setups as used
in the original works, e.g., dataset, EM size, hyper-parameters, etc.
Metrics. We use the final accuracy averaged over classes to
reflect the performance of continual learning. Except for ImageNet-
1000 that represents a significantly large-scale training, the final
accuracy is averaged over five runs. We also measure training
time by referring to the wall-clock time (i.e., actual time taken) of
the end-to-end continual learning.

4.1 Results
Comparison to non-hierarchical EM designs. We compare
RAM-S, ST-S, and ST-L with CarM that performs full swapping
(i.e., CarM-100). Figure 3 presents the final accuracy using the top-1
accuracy, except for BiC that measures the top-5 accuracy for the
ImageNet subset as done in [21]. Figure 4 reports the training time
normalized by RAM-S. We push data into the stream buffer at a
rate enough to keep training always busy with new mini-batches.
Note that RAM-S, ST-S, and CarM use the EM with limited size, as
shown in the second item in the parenthesis of the figures for each
CL method.
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Figure 3: The final accuracy of competing EM setups. For
each CL method, we show the dataset and EM size in bytes
in the parenthesis.

Method BiC DER++ RM

Async -0.3%/+1.7% +0.3%/+2.4% +2.3%/-0.9%
Sync +20.0%/+33.8% +71.6%/+38.8% +25.9%/+2.6%

Table 1: Training time for CarM-50 w.r.t. RAM-S. (+) training
time increases, (-) training time decreases. (/) results for the
CIFAR subset and the ImageNet subset.

First, as Figure 3 shows, CarM improves the accuracy remarkably
over RAM-S that uses only in-memory EM, advancing the state-
of-the-art performances for CIFAR and ImageNet datasets through
data swapping. The results clearly show the effectiveness of using
the storage device in large capacity along with memory to allow CL
to exploit abundant information of the previous tasks. The accuracy
in ST-S is comparable to RAM-S as it uses in-storage EM of the
same size. Obviously, ST-L delivers relatively higher accuracy than
CarM as it does not have any capacity limit in EM. However, ST-L
has to entail excessive direct accesses to the in-storage samples to
deliver greater accuracy gains, thereby having to incur significantly
large operational costs during training, as shown in Figure 4.

Figure 4 shows the training time normalized by RAM-S. We
observe negligible slowdowns with CarM for all CL methods due
to delay optimization techniques such as asynchronous sample
retrieval. Despite having comparable accuracy to RAM-S, ST-S takes
52% more training time than RAM-S, confirming that memory is
more desirable than storage for the same EM size. ST-L has a similar
level of slowdown to ST-S in DER++, since DER++ is the batch-level
learning where both ST-S and ST-L retrieve the same predefined
number of old samples from storage upon receiving a batch of
new samples. However, for BiC and RM, which are the task-level
learning, ST-L has to combine a new task along with all samples in
EM to compose a bundle of training data. In this case, ST-L shows
the slowdown up to 15.21×, making it unfavorable to pursue if fast
and efficient on-device training is the key design objective. Figure 4
shows the results when using 5–10 tasks as done in the original
works. We observe the slowdown is much worse when we increase
the number of tasks into 100 for the datasets.
Async vs Sync. The asynchronous sample retrieval (Async) pre-
sented in Section 3.1 incurs insignificant delay on training as shown
in Figure 4. Here we examine how training speed in CarM changes
over RAM-S as applied with synchronous sample retrieval (Sync).
As shown in Table 1, the synchronous version slows down training
time up to 71.6% for CIFAR subset and 38.8% for ImageNet subset.
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Figure 4: Normalized training time with respect to RAM-S.

Figure 5: Accuracy of BiC and DER++ with CarM-50 on Ima-
geNet subset while varying 𝛼 values on the distillation loss.

CarM on knowledge distillation. As discussed in Section 3.3,
we can further increase accuracy of knowledge distillation-based
CL methods (i.e., BiC and DER++) under CarM by adjusting how
aggressively the distillation loss is used. To this end, using the Ima-
geNet subset, we show accuracy over varying the weight coefficient
𝛼 on the distillation loss (or soft label loss) in Figure 5. The weight
coefficient 𝛽 on the hard label loss is set to be 1 − 𝛼 to reflect its
relative level of consideration while varying 𝛼 values. For each
method, we also include accuracy when 𝛼 increases incrementally
as training proceeds with more tasks, as done in BiC [21].

The results show that the distillation-based methods with CarM
significantly improve accuracy when the 𝛼 is very small. In partic-
ular, for BiC, compared to 𝛼 = 0.9, we obtain 3.9% higher accuracy
when 𝛼 = 0.0 (i.e., no distillation) and 4.9% higher accuracy when
𝛼 = 0.2, which is the best result. Moreover, with CarM, the coef-
ficient does not necessarily be managed complicatedly to achieve
higher accuracy, as done in the original BiC (i.e., Incremental).

4.2 Additional Study
We present an ablation study (Figure 6) using the CIFAR subset
while comparing CarM to RAM-S. We also show the effectiveness
of CarM under a large-scale training using ImageNet-1000 dataset
(Figure 7) or on NVIDIA Jetson TX2 (Figure 8).
Size of EM. To confirm performance benefits over using different
memory sizes, we empirically evaluate CarM-50 over varying EM
sizes and show the average accuracy in Figure 6(a). In all cases,
CarM-50 considerably outperforms RAM-S for all the three CL
methods. Moreover, we observe that data swapping delivers better
accuracy over the memory-only approaches using much smaller
memory. For example, CarM-50 with DER++ on EM size 300 shows
higher accuracy than pure DER++ on EM size 1000.
Data swapping ratio. We present results with different swapping
ratios (Figure 6(b)) to show that our gate model indeed brings



Figure 6: Accuracy over varying (a) EM sizes, (b) data swapping ratios, and (c) storage capacities.
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Figure 8: CarM accuracy on
NVIDIA Jetson TX2 (CIFAR
subset).

out meaningful benefits over using different I/O bandwidths. A
surprising result is that even at CarM-20 in 20% data swapping,
the accuracy is very comparable to when we allow higher data
swapping ratios. The result indicates that our system would be
effective even when applied to the storage with low bandwidth.
Size of storage. As local storage cannot store all the past data,
the system must discard some old samples once the storage is fully
occupied. Figure 6(c) shows accuracy degradation in CarM-50 when
storage capacity is limited to 1.5–10× of the EM size. The results
show that data swapping improves performance over traditional
approaches even with using 50% larger capacity for the storage.
Large number of tasks. One pressing issue on CL is to effectively
enable a large-scale continual learning as it is required to keep
the knowledge learned in the remote past. To evaluate this aspect,
we split ImageNet-1000 (1000 classes) into 10 tasks, each with 100
classes, and run with the three CL methods. As Figure 7 shows,
CarM still outperforms RAM-S at a large gap, showing the potential
for long-term continual model training.
On an embedded device. Figure 8 shows the efficacy of CarM
when running on an embedded device. We see similar trends to
Figure 3 for CarM’s consistently higher accuracy than RAM-S and
to Figure 6(b) for CarM’s effectiveness with using a smaller data
swapping ratio. Moreover, we observe that the absolute accuracy
of RAM-S, CarM-50, and CarM-100 does not degrade due to using a
device with lower computing capacities (as compared to Figure 3).

5 CONCLUSION
Wealleviate catastrophic forgetting by integrating episodicmemory-
based continual learning methods with device-internal data storage,
named CarM.We design data swapping strategies to improve model
accuracy by dynamically utilizing a large amount of the past data
available in the storage. Our swapping mechanism addresses the
cumbersome performance hurdle incurred by slow storage access,
and hence continual model training is not dramatically affected by
data transfers between memory and storage. We show the efficacy
of CarM using three well-known methods on standard datasets.
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