
A Survey of Multi-Tenant
Deep Learning Inference on GPU

Fuxun Yu†, Di Wang‡, Longfei Shangguan‡, Minjia Zhang‡, Chenchen Liu§, Tolga Soyata†, Xiang Chen†
†George Mason University, ‡Microsoft, §University of Maryland, Baltimore County

Abstract—Deep Learning (DL) models have achieved superior
performance. Meanwhile, the computing hardware like NVIDIA
GPUs also demonstrated strong computing scaling trends with
2× throughput and memory bandwidth for each generation. With
such strong computing scaling of GPUs, multi-tenant deep learn-
ing inference by co-locating multiple DL models onto the same
GPU become widely deployed to improve resource utilization,
enhance serving throughput, and reduce energy cost, etc. How-
ever, achieving efficient multi-tenant DL inference is challenging
which requires thorough full-stack system optimization. Previous
surveys either target at summarizing single tenant deep learning
inference optimizations, or only focus on certain single optimiza-
tion layer alone, such as graph-level, kernel-level, etc. This survey
aims to summarize and categorize the emerging challenges and
optimization opportunities for multi-tenant DL inference on GPU.
By overviewing the entire optimization stack, summarizing the
multi-tenant computing innovations, and elaborating the recent
technique advances, we hope that this survey could shed light
on new optimization perspectives and motivate novel works in
future large-scale DL inference system optimization.

I. INTRODUCTION

DL Application and Computing Trends Deep Learning
(DL) models have achieved superior performance in cog-
nitive tasks like vision, speech and language domain, and
have been adopted in medical analysis, machine translation,
product recommendation, etc. The momentum of DL-based
intelligence has appealed millions of users and created a wide-
spectrum of cloud & edge applications like VR/AR games,
intelligent robots and vehicles, large-scale recommendation
systems, and even metaverse applications [12], many of which
are featured with multi-modality, multi-tasking and substantial
task complexity, as shown in Figure 1 (a).

The emergence of such massive DL applications motivates
the adoption of DL accelerators, especially GPUs, in both
cloud and edge. According to the report [33], GPUs accounted
for 85% of the $2.98B cloud data center accelerator market
in 2018. The edge hardware market, with the emerging smart
manufacturing, surveillance applications, is also projected to
grow from $920M in 2021 to $2,080M by 2026 and the edge
GPUs are also taking a steady growth to more than 50%
market share with Nvidia Jetson, TX2, Xavier, Orin, etc.

Within such trends, the capacity of recent generations of
GPUs demonstrates exponential growing speed.1 From K80,
P40, and P100 to recent T4, V100, A100 architectures, GPUs
maintain a trend of doubling performance. The last generation
of V100 [6] offers 120 Tera floating point operations per

1Detailed scaling statistics of GPU capacities could be found in [42].

second (TFLOPS) and 900 GB/s memory bandwidth, and
the numbers further increase to 312 TFLOPS and 1.6TB/s
memory bandwidth for the newer A100 [5]. A100 reports
the ResNet50 [14] inference speed of 36,436 images/second,
showing the computing capacity that overwhelms the limited
needs from conventional single DL model execution schemes.
Therefore, with such scaling trends in both application com-
plexity and GPU capacity, single model execution cannot fulfill
the needs of application scenarios nor fully utilizing the GPUs.

Multi-Tenant DL Inference, as shown in Figure 1 (b), is
one promising solution to the aforementioned scenarios with
multi-modality and multi-tasking needs by running mixed DL
model workloads simultaneously on one powerful GPU to
improve the utilization, throughput, and power efficiency, etc.

There are recently many emerging works that tackle the
multi-tenant DL inference optimization on GPUs. These works
usually take single optimization point of view drawing from
traditional single-model optimization experiences, e.g., either
from the DL model scheduling perspective [1, 9, 50], or the
GPU resource management perspective [8, 19, 43]. However,
achieving the ult-most efficiency for multi-tenant DL comput-
ing is more challenging as it needs to thoroughly consider
the differences between single vs. multi-tenant DL inference,
and requires multi-layer DL optimization or full-stack co-
optimization. As so, there is a great need for a systematical
review of opportunities and challenges on multi-tenant DL
inference optimization.

Our survey is the first work that thoroughly analyzes the
multi-tenant GPU scheduling problem, summarizes the major
differences in single- vs. multi-tenant computing optimization,
and reveals the emerging opportunities and potential benefits
of multi-tenant DL inference on GPUs. To ease the under-
standing, our work also draws some experience from pevious
DL computing stacks, and compares single vs multi-tenant DL
inference on GPU from a hierarchical perspective.

Single vs Multi-Tenant: A Hierarchical Comparison.
Traditional single-tenant DL compilers (Figure 1 (c)) already
include multi-layer optimization: algorithm-level compres-
sion [22, 31, 51, 52], graph-level rewriting [15, 17, 54], run-
time scheduling [9, 37] and kernel tuning [2, 10, 16, 46], etc.
However, optimizations targeting at single-tenant are usually
ill-fitted for multi-tenant inference with following examples.

From the top graph level, multi-tenant DL inference work-
loads represented in directed acyclic graphs (DAGs) come
with significantly higher volume of multi-model operators

Fig. 1. The Emerging Trend of Multi-Tenant DL Computing on GPU.

than single model. This incurs many non-mergeable operators
and exposes much larger scheduling space. Another example
in the lower kernel level is TVM [2]. As one of the most
competitive DNN optimization frameworks, TVM generates
highly efficient code for heterogeneous hardware but with a
built-in assumption of single-tenant execution setting, where
the tuning strategies for the generated code aim to saturate
SMs and memory bandwidth of the GPU. The assumption and
single-tenant tuning however becomes unsuitable for multi-
kernel concurrent execution with partial resource available for
each kernel. According to [7], the maximum throughput gap
comparing single-tenant vs. multi-tenant tuned configurations
for the same computing kernel could reach 5× difference.

Further down to the GPU hardware, multi-tenant DL infer-
ence requires many scheduling support to address problems
like inter-tenant interference, such as dedicated GPU hardware
primitives for resource partitioning, isolation and allocation,
etc. With the current trends towards multi-tenant applications,
GPU vendors like Nvidia have recently released many new
features including Multi-Stream [24], Multi-Process Service
(MPS) [27], Multi-Instance GPU (MIG) [26] and virtual GPUs
(vCS) [28] to support both runtime scheduling and resource
management, which exposes new research opportunities for
multi-tenant DL scheduling and optimization.

With such differences considered, this work will adopt such
a view of optimization stack to thoroughly analyze the multi-
tenant challenges and introduce emerging works.

By reviewing the emerging challenges, opportunities, and
research works on multi-tenant DL computing on the GPU, we
hope this survey could motivate more design and innovations
in this promising new domain. The remaining paper is orga-
nized as follows: Section II introduces the novel challenges
and opportunities in multi-tenant GPU computing stack and a
high-level overview of current vendor GPU support. Section III
summarizes recent research works for multi-tenant computing
in detail. We then give our vision and insights in Section IV.
Section V concludes this paper.

II. CHALLENGES & OPPORTUNITIES
FOR MULTI-TENANT COMPUTING ON GPU

In this section, we first characterize the major differences
between single- vs. multi-tenant DL computing optimization
through the full DL computing stack. We then introduce the

recently-released GPU features, such as Stream, MPS, MIG,
which provide important fundamental backend support for
multi-tenant computing optimization.

A. Challenges for Multi-Tenant DL Computing

Traditional DL computing optimization in full stack often
expands in 1 service-level orchestration [41], 2 graph-level
optimization [15, 49], 3 runtime-level scheduling [9], 4
kernel-level tuning [2, 45] and 5 resource-level manage-
ment [8, 19]. Although there are many previous works for
computing optimization in these difference levels, multi-tenant
computing shows dramatic characteristics that make these
methods ill-fitted. According to the same optimization stack,
we summarize the major differences in Table I and analyze
the computing challenges in Figure 2.

1 Service-level: AI-centric cloud services handle millions of
service queries simultaneously [47]. With the massive comput-
ing capacity of GPUs, multiple DL services could be strate-
gically co-located for efficient concurrent execution, which
is one key difference between multi-tenant GPU computing
versus traditional CPU multi-tasking. By allowing the resource
sharing among concurrent DL workloads, the service providers
could potentially improve the GPU resource utilization and
reduce cost of ownership (COO) like infrastructure and power
cost especially for large-scale data centers [26].

However, the challenges remains for strategic co-location
like that the inter-tenant interference [19] could happen and
degrade the quality of service such as service-level objectives
(SLA) of tail latency and throughput. This could become worse
with increased number of co-located workloads. Therefore,
there are many recent service-level orchestration works [4, 19,

TABLE I
CHALLENGES FOR MULTI-TENANT OPTIMIZATION.

Full Optimization Stack Single-Tenant Multi-Tenant

Co-location No Yes
1 Service-level

Interference No High Interference
2 Graph-level DAG(s) Mostly Seq. Seq. + Parallel

Parallelism Limited Extensive
3 Runtime-level

Complexity Low High
Resource Usage Exclusive Shared

4 Kernel-level
Tuning Objective 100% util. x% partial util.

5 Resource-level Management No Resource Partition

Compute Graphs of
Multi-DNNs

Resource Contention in GPU
Compute-Intensive Ops.

Compute: High
Memory Access: Low

Memory-Intensive Ops.

MaxPool

Compute: Low
Memory Access: High

Multi-
Threading

Compute
Contention

Memory
Contention

Fig. 2. Multi-Tenant DL Computing Challenges.

48] that design different heuristic-based, modeling-based or
prediction-based mechanisms to conduct strategic co-location
for efficient multi-tenant computing on GPUs.

2 Graph-level: DNNs with many operators are commonly
represented as directed acyclic graphs (DAGs), which use
nodes to represent operators and edges to represent the data
flow and dependency [15]. Single-model DAGs are usually se-
quential with limited parallelism like VGG [39], ResNets [14],
MobileNets [35] and EfficietNets [44], which have only one
or two branches and thus exposes small scheduling space [21].

By contrast, multi-tenant DL computing with multiple par-
allel DAGs usually have extensive inter-operator parallelism,
as shown in Figure 2 (left), which enables more flexible inter-
operator scheduling [50]. Certain challenges exist in such
graph scheduling such as the increased complexity with larger
number of operators and search space, and more complex GPU
resource contention analysis, as shown in Figue 2 (right).

3 Runtime-level: Previously due to the limited inter-operator
parallelism, only a few works [1, 9] touch upon runtime-level
scheduling such as certain multi-branch models like Inception,
NasNets and Transformers. These works leverage certain GPU
runtime primitives (e.g., Nvidia multi-stream [24]) for concur-
rent operator scheduling, many of which however incur large
runtime overheads. For example, multi-stream synchronization
forces all streams to wait/stall until the last stream finishes
its workloads [24]. Multi-tenant scheduling tends to suffer
more from such overheads with the increased number of
operators and scheduling complexity. Due to the increased
attention in GPU multi-tenant scheduling, GPU vendors have
recently released a series of important features such as CUDA
graphs [29] to address such scheduling overheads.

4 Kernel-level: Kernel configurations such as loop tiling,
thread blocking, memory colasing, etc. could significantly in-
fluence each operator’s computing efficiency. Previous single-
tenant kernel-level works like TVM [2] and TF-XLA [45] try
to find the best configuration that can saturate the GPU re-
source, i.e., exclusive resource usage. However, as multi-tenant
DNNs share the underlying resource, kernels optimized for
single-tenant settings can easily become sub-optimal for multi-
tenant scenarios. Recently, there are certain works that show
multi-tenant DL computing should optimize kernel configura-

(a) Multi Stream

Shared Memory Bandwidth

A B C A B C

(b) Multi-Process Service

Shared Memory Bandwidth

33%
SMs

33%
SMs

33%
SMs

A B C

(c) Multi-Instance GPU

Fully
Isolated

Shared Stream
Multiprocessors (SMs)

vGPU vGPU vGPU

Fig. 3. Multi-Stream, MPS and MIG Illustration.

tions according to its available resource ratio during practical
execution [7], which shows a 5× throughput difference.

5 Resource-level: To achieve adaptive multi-tenant resource
partitioning and provisioning, it asks for both strategic design
and hardware support. The first challenge for such adaptive
resource provisioning lies in the DL workload dynamics [50].
Multiple DL models with different deep structures have highly
diverse and non-stable computing/memory requirements, mak-
ing the inter-model resource sharing and competition highly
dynamic and thus hard to determine the optimal resource
partitioning. On the other hand, adaptive resource management
requires highly flexible GPU partitioning and reconfiguration
capability. Although recently there emerges certain adaptive
resource provisioning features (e.g., Nvidia multi-process ser-
vice, multi-instance GPU [26, 27]) that supports resource par-
titioning, the reconfiguration takes non-negligible time (e.g.,
several ms), which is a major limitation of the recent resource
scheduling works [8, 19].

B. Emerging Multi-Tenant Computing Opportunities

Previously, one important reason that hinders the adoption
and development of multi-tenant DL computing on GPU is
the insufficient hardware scheduling mechanisms. But with the
increasing attention in this topic, GPU vendors like Nvidia
release certain new GPU multi-tenant features to support
multi-tenant DL inference, which provides great opportunities
for multi-tenant scheduling. The multi-tenant GPU scheduling
features could be categorized into two major types: software-
level and hardware-level support.

1 Software Approach: The very first GPU multi-tasking
feature is the Multi-Stream mechanism [24] supported in the
Fermi GPU architecture (Figure 3 (a)). As a software-based
programming model, a stream can contain a sequence of issued
operations that execute on the GPU. Operations in different
streams could run concurrently and share the underlying GPU
resources like SMs [24]. The similar feature Hyper-Q [23] is
introduced in the Kepler GPU architecture (2013) that expands
previous 16-way to 32-way hardware kernel queues for higher
concurrency support. Along with the concurrency support,
the CUDA library also releases certain scheduling APIs like
DeviceSync, StreamWait, etc. to support more fine-grained

TABLE II
GPU SUPPORT FOR MULTI-TENANT COMPUTING.

Mechanisms Stream MPS MIG

Partition Type No Logical Physical

Max Partition Unlimited 48 7

SM Isolation No By Percentage Yes

Mem BW Isolation No No Yes

Performance QoS No Partial Yes

Reconfiguration Dynamic Process Launch When Idle

scheduling capability [25]. These software-level APIs provide
valuable multi-tenant GPU scheduling mechanisms, based on
which many recent works have started to explore the fine-
grained DL operator-level scheduling techniques [9, 50].

2 Hardware Approach: Besides the software support,
NVIDIA recently also releases advanced hardware-level re-
source management mechanisms to support flexible resource
allocation, isolation and virtualization. These resource man-
agement methods can be categorized into two types: logical
and physical. Multi-Process Service (MPS) [27] is a logical
resource partitioning mechanism (Figure 3 (b)) that allows
user to partition the streaming multi-processors (SMs) and
allocate them to different processes, for example, 30%, 70%
to two concurrent processes. Such partition is done by the
software-based process-to-SM mapping scheduling and thus
considered logical. Notably, although MPS enables logical SM
partitioning, other GPU resources like memory bandwidth are
not partitioned and thus MPS cannot fully avoid the inter-
process resource competition and interference. To address this,
the recently introduced Multi-Instance GPU (MIG) [26] on
Ampere architecture enables physical partitioning of both SMs
and memory bandwidths through dedicated GPU architecture
design (Figure 3 (c)). Such physical partition ensures fully
isolated resources, and thus no interference can happen be-
tween different processes. MIG support splitting one A100
GPU into seven fully isolated GPU instances. Meanwhile, it
provides certain reconfiguration capability when the GPU is
fully or partial idle. For example, one A100 could be split into
three instances with the ratio of 4:2:1 and then reconfigured to
be 3:3:1, etc [26]. More detailed comparison of Stream, MPS,
MIG could be found in Table II.

III. MULTI-TENANT COMPUTING OPTIMIZATION:
DESIGN AND INNOVATIONS

Based on the former challenges and opportunities, we re-
view the emerging works tackling the multi-tenant scheduling
optimization from different perspectives. We summarize these
works in Table III. From a top-down view, these works are
categorized into several levels, i.e., from DL service-level
orchestration, graph & runtime-level scheduling, to kernel-
level auto-tuing and then GPU resource-level management.

A. Service-level Orchestration
DL service-level orchestration is an important feature in

large-scale data centers to improve the GPU utilization. As the
top-most scheduling level, such orchestration usually regards
one service query as the basic scheduling unit. This reduces
the scheduling complexity as there is no need to consider the
intra-DNN model structure details (operators and graphs). One
example is the Microsoft Deep Learning Inference Service
(DLIS) system [41]. The service orchestrator characterizes
different models’ resource requirements and then strategically
places one or multiple queries onto hosts through the service
router. Therefore, it could maximize the served queries per
second (QPS) while ensure little inter-query interference so as
to maintain similar tail latency.

However, designing a proper co-location strategy or system
is a non-trivial task. For example, one challenging factor is
the serving dynamics, i.e., undetermined arrival rates and/or
distribution of incoming DL queries, different RNN/LSTMs
queries with varied inputs and control states. Distinct from
static workloads that we can get the full information, such
dynamic scenarios require us to either utilize historical data or
predict the future workload dynamics. PREMA [4] proposed a
predictive multi-task DNN scheduling algorithm that combines
off-line records and online token-based job scheduling to
determine the best multi-tenant co-location strategy.

Another challenge in multi-tenant co-location is how to
accurately predict the inter-model resource interference. This
is a critical factor in ensuring QoS such as tail latency. [19]
trained a ML-based latency degradation predictor under co-
location using offline-profiled hardware-level features such as
SM and DRAM usage, PCIe read/write BW, buffer usage, etc.
Then the latency degradation predictor is used to evaluate the
model placement’s potential influence for each query.

However, these works have certain scalability issues as they
mostly targeted at static model types, hardware types, etc.,
which may not be suitable for dynamic workloads. Meanwhile,
as each DNN can have many operators (e.g., layers) that
have fluctuated resource consumption, such coarse-grained
scheduling (with one entire query as the basic unit) may
suffer from resource under-utilization/contention occasionally
and thus still hinders the QoS.

B. Graph and Runtime-level Scheduling
Graph and runtime-level scheduling could help address one

of the aforementioned challenge of coarse-grained granularity
by enabling more fine-grained scheduling, e.g., the DNN
operators. This could be done by leveraging the GPU software-
level support such as the multi-stream mechanism and schedul-
ing APIs. For example, [50] propose an ML-based scheduling
strategy for multi-tenant DNN exeuction acceleration. It first
abstracts multiple DNN’s computation graph with all operators
into a global intermediate representation (IR), which enables
flexible resource sharing between different tenants so as to
improve the utilization. To find the optimal concurrent operator
execution strategy in the huge scheduling space, they design a
ML-based auto-search method by defining three main factors:

TABLE III
RECENT WORKS ON MULTI-TENANT COMPUTING OPTIMIZATION (JCT: JOB COMPLETION TIME, SLA: SERVICE-LEVEL AGREEMENT).

Ref. Hardware Perspective Algorithm/Strategy Improvement/Achievement

Inter-Aware [19] GPU DL Service-level Orchestration
• ML-based Interference Predictor
• Proactive Query Scheduler

• Reducing Job Interference
• Enhancing Serving Throughout

Irina [48] GPU DL Service-level Orchestration
• Online Query Scheduler
• Heuristic-based Preemption
• Concurrent Execution & Batching

• Reducing Client-Side JCT

PREMA [4] NPU DL Service-level Orchestration
• Online Query Scheduler
• Heuristic-based Preemption

• Reduced High-Priority Job JCT
• Maintaining Low-Priority SLA

Runtime-Aware [50] GPU Graph & Runtime-level Scheduling
• Multi-Model DAG Rewriting
• ML-based Scheduling Search
• Multi-Stream Runtime Scheduling

• Reduced Inference Latency

Spatial-Tune [7] GPU Kernel-level Auto-Tuning
• MPS-based Resource Allocation
• Partial-Resource Kernel Tuning

• Enhanced Kernel Performance
• Reduced Inter-kernel Interference

GSlice [8] GPU Resource-level Management
• MPS-based Resource Partitioning
• Adaptive Batching

• Enhanced Serving Throughput
• Maintaining SLA

Spatial-Partition [3] GPU Resource-level Management
• MPS-based Resource Partitioning
• Interference-aware Scheduling

• Enhanced Serving Throughput
• Maintaining SLA

MIG-Serving [43] GPU Resource-level Management
• MIG-based Resource Reconfiguration
• Fast & Slow Query Scheduling

• Enhanced Serving Throughput
• Maintaining SLA

Planaria [13]
Systolic
Arrays

Resource-level Management • Architecture Reconfiguration
• Enhanced Serving Throughput
• Reduced Energy Consumption

scheduling search space, profiling-guided latency cost model,
and the ML search algorithm. Based on offline profiling
records, the search algorithm could find the best scheduling
for optimal GPU utilization and throughput.

Such graph and runtime-level operator scheduling could
usually achieve better performance due to the fine-grained
design, but they also face more scalability issues, e.g., when
the number of co-located workloads increase to very large.
Meanwhile, it also applies to static or known multi-tenant
workload only, which cannot address dynamic model types.

C. Resource-Level Management

Besides the aforementioned works, another optimization
perspective to solve the inter-tenant inference is to conduct
fine-grained resource managing [8, 13]. For example, spatial
partitioning and allocation of GPU resources to different DL
workloads could isolate different jobs’ resource (e.g., stream
multiprocessors (SMs), memory bandwidths), thus avoiding
the job interference in the hardware resource level. However,
as we introduced before, achieving fine-grained resource parti-
tioning is non-achievable until recently GPU vendors release a
series of resource sharing and partitioning support like multi-
streams, multi-process services (MPS [27]) and multi-instance
GPU (MIG [26]). Most recent resource-level management
works are built upon these technologies.

For example, GSlice [8] uses MPS to conduct adaptive
SM partitioning for different DNN jobs. They design a self-
learning method to dynamically adjust the GPU resource
allocation ratio for each workload and thus avoid interfer-
ence among co-located DL workloads and maximize the
throughput. [3] utilizes similar spatial partitioning mechanism
by MPS while additionally combining temporal scheduling
strategies. MIG-Serving [43] is the most recent work that
adopts the newly-released MIG feature on A100 to achieve
spatial resource management for multi-tenant scheduling.

However, such spatial resource partitioning solutions also
have an intrinsic limitation that is the costly re-configuration
when the workloads change and requires resource partitioning
adjustment. For GPUs, re-configuring the resource partitioning
requires certain amount of time (e.g., tens of ms or more),
which can be even larger than one DL inference workloads’
processing time. Therefore, re-configuring frequently is not
practical and thus limits such solutions’ performance when
facing dynamic workloads. [8] tries to reduce the stall caused
by reconfiguration time of MPS by utilizing a standby/shadow
process. However, the minimum time for switching one parti-
tioning configuration to another one still cost several seconds,
which is still non-negligible in online serving.

D. Potential Directions for Remaining Challenges

1 ML-based Prediction and Online Learning: To address
the problem of service dynamics, using ML-based predic-
tive model (e.g., reinforcement learning, LSTM, etc.) is one
promising direction, which can potentially predict the future
queries trend and guide the overall scheduling. The ML-based
model can be initially trained offline by historical serving
records. During the online serving process, active learning
and continual learning [30, 32] using the latency/throughput as
feedback can be potentially utilized to improve the predictive
accuracy and the scheduling effectiveness consistently.

Another way of leveraging ML-based prediction is to con-
duct light-weight modeling to predict the latency degradation
under different multi-model and hardware combinations so that
the scheduler can make better decision regarding the latency
SLA constraints. For example, the work [19] built a ML
model to predict the latency of multi-model inference cases on
different machines. As the effectiveness of the final scheduling
solution highly depends on the modeling accuracy, the scala-
bility and generality issue across hardware/model types needs
to be addressed, which can be also very challenging.

Fig. 4. The future trends to a larger scale DL system.

2 Software-Hardware Co-Scheduling: The software and
hardware scheduling could be complementary to provide both
high job scheduling flexibility and strict resource isolation.
There are some recent works that adopt such a temporal-spatial
combined perspective. [3] uses MPS to conduct resource par-
titioning and then implements a heuristic-based task scheduler
to find the appropriate mapping between the DNN queries
and gpu partitions. In addition to that, software-hardware
scheduling could also be leveraged to alleviate certain re-
configuration overhead. For example, it’s potential to conduct
software-based scheduling within a partitioned GPU slice, e.g.,
combining multi-stream with MIG. In this way, fine-grained
scheduling could be achieved without re-partitioning the entire
GPU, avoiding the reconfiguration overhead.

IV. TOWARDS LARGE-SCALE DL COMPUTING:
VISION AND INSIGHTS

A. Architecture Design with “Full Stack in the Loop”
The fast development of multi-tenant DL computing brings

many challenges for the system stack optimizations. Besides
for the GPU only, this also enlightens the other DL-oriented
hardware architecture designers (e.g., TPU, chiplet, neuro-
morphic and quantum-based accelerators) to optimize for
flexibility and agility facing a rapidly changing DL application
landscape. Specifically, one important future trend is the “full
stack in the loop”, i.e., to remove the boundaries in the vertical
DL system stack and conduct full-stack integration to strive
for both optimal performance and flexibility.

One example in this line of efforts is the DL compiler
renovation by tvm unity [34], as shown in Figure 4 (a). Current
DL computing stack conducts separate layer-wise optimization
(graph-runtime-kernel-resource) and single directional top-
down deployment. This however prohibits feedback loops and
cross-layer interactions for SW/HW co-compiling based on
model workloads and hardware characteristics. Unifying the
abstraction between layers would thus greatly facilitate the
new full-stack optimization as a loop, not only for multi-tenant
computing, but also for future wider DL application.

Another example is the increasing attention in the versatile
and flexible chiplet-based SW/HW co-design [36, 53] that uses
multi-chip-modules (MCMs). Compared to traditional large
monolithic die, such MCM combines smaller chiplets into a
larger system and substantially reduces fabrication and design
costs. However, it requires thorough application awareness to
optimize the chip design and overall performance. As so, such

chiplet modules could also greatly benefit from the full-stack-
in-the-loop architecture of DL computing.

B. The Future Large-Scale DL System Landscape
Multi-tenant DL computing is a natural generalization re-

sult due to the significant computing scaling trend of GPU.
However, recently another model scaling trend is observed,
that is, designing and training super-scale AI models for
general intelligence. For example, the recent SOTA giant
AI model Megatron-NLG [40] has reached 530 billions of
parameters and requires hundreds of GPUs to conduct multi-
node distributed inference. If we take such model scaling into
consideration, even more new DL computing modes could be
observed and enrich the future DL & system landscape.

We describe the future large-scale DL system landscape by
using a taxonomy in Figure 4 (b). Using Instance (I) to denote
one DNN model and Device (D) to denote the hardware,
traditional DL system mostly comes within the Single Instance
Single Device (SISD) domain and only constitute the top-left
quarter in the full spectrum. Multi-tenant computing emerges
as the Multiple Instances Single Device (MISD) with the
computing scaling trend, as we summarized in this servery.

Whereas diagonally, with the model scaling trend, the Sin-
gle Instance Multiple Devices (SIMD) interaction mode also
emerges and is attracting more attention such as distributed
inference for super-scale giant models [11, 18, 20, 38] includ-
ing language, recommendation models, etc. Finally, Multiple
Instances Multiple Devices (MIMD) computing would even-
tually combine all these modes and become a practical needs
for future DL-centric data center optimization.

V. CONCLUSION

DL-based intelligence creates a wide-spectrum of applica-
tions featured with substantial complexity like multi-modality
and multi-tasking. GPU is one major type of DL accelera-
tors and its gen-by-gen capacity shows exponential scaling.
With the double scaling of application complexity and GPU
capacity, multi-tenant DL inference emerges as an effective
computing paradigm on GPU to enhance the resource utiliza-
tion, throughput, and power efficiency. This survey categorizes
the emerging optimization challenges and opportunities for
multi-tenant DL inference on GPU following a hierarchical
comparison with traditional single-tenant optimization. We
hope that this survey could shed lights on new perspectives
and novel works in future large-scale DL system optimization.

REFERENCES

[1] Yang Bai, Xufeng Yao, Qi Sun, and Bei Yu. 2021. AutoGTCO:
Graph and Tensor Co-Optimize for Image Recognition with
Transformers on GPU. In 2021 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD).

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An automated
end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 18). 578–594.

[3] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park,
Youngjin Kwon, and Jaehyuk Huh. 2021. Multi-model Machine
Learning Inference Serving with GPU Spatial Partitioning.
arXiv preprint arXiv:2109.01611 (2021).

[4] Yujeong Choi and Minsoo Rhu. 2020. Prema: A predictive
multi-task scheduling algorithm for preemptible neural pro-
cessing units. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA).

[5] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam,
and Ronny Krashinsky. 2021. Nvidia a100 tensor core gpu:
Performance and innovation. IEEE Micro 41, 2 (2021), 29–35.

[6] NVIDIA Coorporation. 2017. NVIDIA Tesla V100 GPU Ar-
chitecture. Technical Report. http://www.nvidia.com/object/
volta-architecture.

[7] Aditya Dhakal, Junguk Cho, Sameer G Kulkarni, KK Ramakr-
ishnan, and Puneet Sharma. 2020. Spatial Sharing of GPU
for Autotuning DNN models. arXiv preprint arXiv:2008.03602
(2020).

[8] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan.
2020. Gslice: controlled spatial sharing of gpus for a scalable
inference platform. In Proceedings of the 11th ACM Symposium
on Cloud Computing. 492–506.

[9] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko,
and Song Han. 2020. IOS: Inter-Operator Scheduler for CNN
Acceleration. arXiv preprint arXiv:2011.01302 (2020).

[10] Vincent Dumoulin and Francesco Visin. 2016. A guide
to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285 (2016).

[11] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch
transformers: Scaling to trillion parameter models with simple
and efficient sparsity. arXiv preprint arXiv:2101.03961 (2021).

[12] Peter Fernandez. 2022. Facebook, Meta, the metaverse and
libraries. Library Hi Tech News (2022).

[13] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean
Kinzer, Brahmendra Reddy Yatham, Navateja Alla, Hardik
Sharma, Mohammad Alian, Eiman Ebrahimi, Nam Sung Kim,
et al. 2020. Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 681–697.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition. 770–778.

[15] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski,
Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing
deep learning computation with automatic generation of graph
substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 47–62.

[16] Andrew Lavin and Scott Gray. 2016. Fast algorithms for
convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4013–
4021.

[17] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long.
2020. Automatic horizontal fusion for GPU kernels. arXiv

preprint arXiv:2007.01277 (2020).
[18] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-

Yeh Tsai, Carole-Jean Wu, and Mark Hempstead. 2021. Under-
standing capacity-driven scale-out neural recommendation infer-
ence. In 2021 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 162–171.

[19] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J Yad-
wadkar, and Christos Kozyrakis. 2021. Interference-Aware
Scheduling for Inference Serving. In Proceedings of the 1st
Workshop on Machine Learning and Systems. 80–88.

[20] Nvidia Microsoft. 2020. Using DeepSpeed and
Megatron to Train Megatron-Turing NLG 530B,
the World’s Largest and Most Powerful Generative
Language Model. https://developer.nvidia.com/blog/
using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/.

[21] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and
Bin Ren. 2021. DNNFusion: accelerating deep neural networks
execution with advanced operator fusion. In Proceedings of the
42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 883–898.

[22] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai
Qian, Xue Lin, Yanzhi Wang, and Bin Ren. 2020. Patdnn:
Achieving real-time dnn execution on mobile devices with
pattern-based weight pruning. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 907–922.

[23] NVIDIA. 2013. Hyper-Q. https://developer.download.
nvidia.com/compute/DevZone/C/html x64/6 Advanced/
simpleHyperQ/doc/HyperQ.pdf.

[24] NVIDIA. 2015. CUDA Multi-Streams. https://developer.nvidia.
com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

[25] NVIDIA. 2020. CUDA Programming Guide. https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html.

[26] NVIDIA. 2020. NVIDIA Multi Instance GPU (MIG). https:
//docs.nvidia.com/datacenter/tesla/mig-user-guide/.

[27] NVIDIA. 2020. NVIDIA Multi Process Service
(MPS). https://docs.nvidia.com/deploy/pdf/
CUDA-Multi-Process-Service-Overview.pdf.

[28] NVIDIA. 2020. NVIDIA Virtual Compute Server.
https://www.nvidia.com/content/dam/en-zz/Solutions/
design-visualization/solutions/resources/documents1/
Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.
pdf.

[29] NVIDIA. 2021. CUDA Graphs. https://developer.nvidia.com/
blog/cuda-graphs/.

[30] German I Parisi, Ronald Kemker, Jose L Part, Christopher
Kanan, and Stefan Wermter. 2019. Continual lifelong learning
with neural networks: A review. Neural Networks 113 (2019),
54–71.

[31] Zhuwei Qin, Fuxun Yu, Chenchen Liu, and Xiang Chen.
2018. Functionality-oriented convolutional filter pruning. arXiv
preprint arXiv:1810.07322 (2018).

[32] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Brij B Gupta, Xiaojiang Chen, and Xin Wang. 2021.
A survey of deep active learning. ACM Computing Surveys
(CSUR) 54, 9 (2021), 1–40.

[33] Market Reports. 2021. Global Data Center Accelerator
Market Size, Status and Forecast 2020-2025.
https://www.mynewsdesk.com/brandessence/pressreleases/
data-center-accelerator-market-size-2021-cagr-38-dot-7-percent-3112488.

[34] Adrian Sampson, Tianqi Chen, and Jared Roesch. 2022. Apache
TVM Unity: a vision for the ML software and hardware
ecosystem. https://tvm.apache.org/2021/12/15/tvm-unity.

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4510–

http://www.nvidia.com/object/volta-architecture
http://www.nvidia.com/object/volta-architecture
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/pdf/CUDA-Multi-Process-Service-Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA-Multi-Process-Service-Overview.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/Technical-Brief-Multi-Instance-GPU-NVIDIA-Virtual-Compute-Server.pdf
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://www.mynewsdesk.com/brandessence/pressreleases/data-center-accelerator-market-size-2021-cagr-38-dot-7-percent-3112488
https://www.mynewsdesk.com/brandessence/pressreleases/data-center-accelerator-market-size-2021-cagr-38-dot-7-percent-3112488
https://tvm.apache.org/2021/12/15/tvm-unity

4520.
[36] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkate-

san, Brian Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller,
Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, et al.
2019. Simba: Scaling deep-learning inference with multi-chip-
module-based architecture. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 14–
27.

[37] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu,
Mu Li, Vin Sharma, Zachary Tatlock, and Yida Wang. 2021.
Nimble: Efficiently compiling dynamic neural networks for
model inference. Proceedings of MLSys (2021).

[38] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick
LeGresley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-
lm: Training multi-billion parameter language models using
model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[39] Karen Simonyan and Andrew Zisserman. 2014. Very deep
convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 (2014).

[40] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick
LeGresley, Samyam Rajbhandari, Jared Casper, Zhun Liu, Shri-
mai Prabhumoye, George Zerveas, Vijay Korthikanti, et al.
2022. Using DeepSpeed and Megatron to Train Megatron-
Turing NLG 530B, A Large-Scale Generative Language Model.
arXiv preprint arXiv:2201.11990 (2022).

[41] Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Yingnan
Li, Yuxiong He, Elton Zheng, Adi Oltean, Maya Mosyak,
Chris Barnes, et al. 2019. Deep learning inference service
at microsoft. In 2019 {USENIX} Conference on Operational
Machine Learning (OpML 19). 15–17.

[42] Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli.
2019. Summarizing CPU and GPU design trends with product
data. arXiv preprint arXiv:1911.11313 (2019).

[43] Cheng Tan, Zhichao Li, and et al. 2021. Serving DNN Mod-
els with Multi-Instance GPUs: A Case of the Reconfigurable
Machine Scheduling Problem. arXiv:2109.11067 (2021).

[44] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946 (2019).

[45] TensorFlow. 2020. TensorFlow XLA (Accelerated Linear Al-
gebra). https://www.tensorflow.org/xla.

[46] Han Vanholder. 2016. Efficient inference with tensorrt. In GPU
Technology Conference, Vol. 1. 2.

[47] Lukasz Wesolowski, Bilge Acun, Valentin Andrei, Adnan Aziz,
Gisle Dankel, Christopher Gregg, Xiaoqiao Meng, Cyril Meuril-
lon, Denis Sheahan, Lei Tian, et al. 2021. Datacenter-Scale
Analysis and Optimization of GPU Machine Learning Work-
loads. IEEE Micro 41, 5 (2021), 101–112.

[48] Xiaorui Wu, Hong Xu, and Yi Wang. 2020. Irina: Accelerating
DNN Inference with Efficient Online Scheduling. In 4th Asia-
Pacific Workshop on Networking. 36–43.

[49] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max
Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality
saturation for tensor graph superoptimization. Proceedings of
Machine Learning and Systems 3 (2021), 255–268.

[50] Fuxun Yu and et al. 2021. Automated Runtime-Aware Schedul-
ing for Multi-Tenant DNN Inference on GPU. In Proceedings
of the 40th IEEE International Conference on Computer Aided
Design (ICCAD).

[51] Fuxun Yu, Chenchen Liu, Di Wang, Yanzhi Wang, and Xiang
Chen. 2020. AntiDote: Attention-based Dynamic Optimization
for Neural Network Runtime Efficiency. In 2020 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE).

[52] Fuxun Yu, Zhuwei Qin, Di Wang, Ping Xu, Chenchen Liu,
Zhi Tian, and Xiang Chen. 2020. DCCNN: computational
flow redefinition for efficient cnn through structural decoupling.
In 2020 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 1097–1102.
[53] Hao Zheng, Ke Wang, and Ahmed Louri. 2020. A versatile and

flexible chiplet-based system design for heterogeneous many-
core architectures. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[54] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang
Zhuo, Koushik Sen, et al. 2020. Ansor: Generating high-
performance tensor programs for deep learning. In 14th
{USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 20). 863–879.

https://www.tensorflow.org/xla

	Introduction
	Challenges & Opportunities for Multi-Tenant Computing on GPU
	Challenges for Multi-Tenant DL Computing
	Emerging Multi-Tenant Computing Opportunities

	Multi-Tenant Computing Optimization: Design and Innovations
	Service-level Orchestration
	Graph and Runtime-level Scheduling
	Resource-Level Management
	Potential Directions for Remaining Challenges

	Towards Large-Scale DL Computing: Vision and Insights
	Architecture Design with ``Full Stack in the Loop"
	The Future Large-Scale DL System Landscape

	Conclusion

