
GraSP: Optimizing Graph-based Nearest Neighbor Search
with Subgraph Sampling and Pruning

Minjia Zhang, Wenhan Wang, Yuxiong He

Microsoft

Bellevue, WA, USA

{minjiaz,wenhanw,yuxhe}@microsoft.com

ABSTRACT
Nearest Neighbor Search (NNS) has recently drawn a rapid growth

of interest because of its core role in high-dimensional vector data

management in data science and AI applications. The interest is

fueled by the success of neural embedding, where deep learning

models transform unstructured data into semantically correlated

feature vectors for data analysis, e.g., recommending popular items.

Among several categories of methods for fast NNS, graph-based

approximate nearest neighbor search algorithms have led to the

best-in-class search performance on a wide range of real-world

datasets. While prior works improve graph-based NNS search effi-

ciency mainly through exploiting the structure of the graph with

sophisticated heuristic rules, in this work, we show that the fre-

quency distributions of edge visits for graph-based NNS can be

highly skewed. This finding leads to the study of pruning unneces-

sary edges to avoid redundant computation during graph traversal

by utilizing the query distribution, an important yet under-explored

aspect of graph-based NNS. In particular, we formulate graph prun-

ing as a discrete optimization problem, and introduce a graph opti-

mization algorithm GraSP that improves the search efficiency of

similarity graphs by learning to prune redundant edges. GraSP

enhances an existing similarity graph with a probabilistic model. It

then performs a novel subgraph sampling and iterative refinement

optimization to explicitly maximize search efficiency when remov-

ing a subset of edges in expectation over a graph for a large set

of training queries. The evaluation shows that GraSP consistently

improves the search efficiency on real-world datasets, providing up

to 2.24X faster search speed than state-of-the-art methods without

losing accuracy.

CCS CONCEPTS
• Information systems → Information retrieval; • Comput-
ing methodologies→ Machine learning.

KEYWORDS
Vector management and search, search efficiency, graph sampling

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498425

ACM Reference Format:
Minjia Zhang, Wenhan Wang, Yuxiong He. 2022. GraSP: Optimizing Graph-

based Nearest Neighbor Search with Subgraph Sampling and Pruning. In

Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3488560.3498425

1 INTRODUCTION
Nearest neighbor search has been the core of canonical learning

algorithms such as non-parametric classification/regression. The

problem has recently become the focus of intense research activity

due to its role in supporting semantic-based search of unstructured

data such as images, texts, video, and speech using neural embed-

ding models. In semantic-based search, the unstructured entities are

embedded as dense continuous vectors such that the similarity be-

tween entities is expressed as the distance (e.g., Euclidean) between

their embeddings [45, 47, 51, 53]. During inference, the search query

is embedded into the same high dimensional space, and the applica-

tion or service returns the entities whose embeddings are nearest to

the embedded search query [40]. For example, e-commerce players

such as Amazon [41] and Alibaba [56] build semantic-based search

engines, which embed product catalog and the search query into

high-dimensional vectors and recommends products whose embed-

dings that are closest to the embedded search query; Youtube [17]

embeds videos to vectors for video recommendation; Web-scale

search engines embed text (e.g., word2vec [37], doc2vec [30]) and

images (e.g., VGG [47]) for text/image retrieval [16, 49]. Due to

the success and continual advancement of neural embedding tech-

niques that effectively capture the semantic relations of objects, we

expect applications built on top of the embedding-based search to

continue growing in the future.

A big challenge of the aforementioned applications is on per-

forming fast near neighbor search, because the search happens for

every query, and applications such as web search and recommen-

dations are interactive and need to return near neighbors within

a few or tens of milliseconds to avoid degrading user satisfaction

and revenue [22]. Moreover, interactive services often need to han-

dle massive request volumes and could require hundreds and even

thousands of machines for serving similarity search: serving effi-

ciency and thus the cost (e.g., the ownership cost and energy cost)

are also of crucial importance.

A vast amount of theoretical and empirical literature has been

proposed for fast near neighbor search, ranging from space par-

titioning [8] to hardware-based solutions [28, 54]. Among them,

graph-based approaches such as HNSW [36] have emerged as a re-

markably effective approach and achieved the best-in-class search

performance on real-world datasets [20, 21, 32], outperforming

existing algorithms such as tree-based approaches [39, 52] and

https://doi.org/10.1145/3488560.3498425
https://doi.org/10.1145/3488560.3498425

locality-sensitive hashing [6]. For example, four of the top five

search libraries on well-established ANN benchmarks use graph

indices [9]. Graph indices have also been integrated with many

large-scale production systems [3, 16, 48–50]. Therefore, optimiz-

ing graph-based near neighbor search has a clear practical value.

To improve search efficiency, existing methods often build a

similarity graph by exploiting graph structures with heuristic rules.

For example, several state-of-the-art methods [25, 36] builds a graph

by iteratively adding nodes to a partially constructed graph. In this

process, existing methods refine the graph by adding diversified

edges (e.g., adding short-range links to create densely connected

local clusters and long-range links that connect those clusters) and

removing unnecessary edges (e.g., so that a node does not exceed a

pre-defined upper bound out-degree) to improve the navigability of

the graph. Different methods [24, 25, 36] employ slightly different

heuristics to accomplish this, but overall they are driven by the

same principles. Despite showing promising results, one subtle

issue of this type of approach is that the heuristics do not directly

optimize the index structure for online search efficiency. As a result,

different heuristics can lead to superior results on some datasets

but worse performance on others.

Since many online services often receive hundreds of thousands

of queries per day, which are available in abundance (e.g., in query

log), it seems natural to ask, "can we improve the near neighbor

search efficiency by learning from existing queries?" – an important

yet surprisingly under-explored aspect for the ANN search task.

To answer this question, we formulate the graph pruning process

as a discrete optimization problem towards maximizing search ef-

ficiency for a large set of training queries when a subset of edges

are removed from the original graph. To solve this problem, we

introduce a new graph optimization algorithm for nearest neighbor

search (GraSP: Graph Sampling and Pruning), that efficiently im-

prove the search efficiency of similarity graphs by learning to prune

redundant edges. GraSP enhances an existing similarity graph with

a probabilistic model called Annealable Similarity Graph (ASG).

GraSP then performs a novel subgraph sampling and iterative re-

finement approach to learn important edges based on the joint

probability of individual edges that maximize the accuracy and

minimize the search complexity in expectation over graphs.

Specifically, the contributions of our paper consist of (1) a prelimi-

nary analysis that reveals the challenges and opportunities from the

existing graph-based ANN search. (2) A novel probabilistic model

called Annealable Similarity Graph (ASG) for similarity graphs,

which makes it easy to learn an edge probability for each edge that

indicates whether an edge can be pruned without hurting search

efficiency. (3) A novel subgraph sampling and iterative refinement

optimization method which efficiently learns an important subset

of edges of a graph to reduce ANN search latency without sacri-

ficing accuracy. (4) A theoretical proof of the correctness of our

optimization. (5) A detailed evaluation of the proposed method on

real-world benchmarks. The evaluation results show that GraSP

enhances existing graph-based ANN search algorithms such as

HNSW to achieve up to 1.49x speedups and is up to 2.24x faster

than NSG in search time without sacrificing accuracy.

2 RELATEDWORK
The literature on the nearest neighbor search is vast, and hence,

we restrict our attention to the most relevant works here. Earlier

works on ANN indexing mostly focus on space partitioning based

methods, which partition the vector space and index the resulting

sub-spaces for fast retrievals, such as KD-Tree [14], R
∗
-Tree [13],

and Randomized KD-Tree [39]. However, the complexity of these

methods becomes not more efficient than a brute-force search as

the dimension becomes large (e.g., >15) [31]. Therefore, they per-

form poorly on embedding vectors that are more than a few tens

of dimensions. Prior works have also devoted extensive efforts

over locality-sensitive hashing [5, 7]. These methods have solid

theoretical foundations and allow us to estimate the search tim@e

or the probability of successful search. However, LSH and similar

approaches have been designed for large sparse vectors with hun-

dreds of thousands of dimensions, not dense continuous vectors

with at most a few hundreds of dimensions. As a result, graph-based

approaches outperform LSH-based methods by a large margin on

large-scale datasets [29, 32, 36].

A separate line of research involves compression, which com-

putes compressed representations of points to make computing

the approximate distance quickly while saving memory (e.g., com-

pact Hamming codes [43] and product quantization [27, 29, 42]).

Compression can be combined with indexing approaches to save

memory while providing fast ANN search [12, 48, 55]. Although

compression-based methods achieve outstanding memory savings,

they are sensitive to quantization errors and result in poor recall@1

accuracy on large datasets [20, 32].

More recently, Malkov and Yashunin found that graphs that

satisfy the Small World property are good candidates for best-
first search. They introduce Hierarchical Navigable Small World

(HNSW) [36], which iteratively builds a hierarchical k-NN graph

with randomly inserted long-range links to enhance graph connec-

tivity. For each query, it then performs a walk, which eventually

converges to the nearest neighbor in logarithmic complexity. Subse-

quently, Fu et al. proposed NSG, which approximatesMonotonic Rel-
ative Neighbor Graph (MRNG) [25] that also involves long-ranged

links for enhancing connectivity. To the best of our knowledge, both

HNSW and NSG are considered as the state-of-the-art methods for

ANN search [21, 32] and have been adopted by major players in

the industry [4, 34, 48].

3 OBSERVATIONS AND OPPORTUNITIES
This section presents our observation that motivated the design of

the approach introduced in Section 4. We conduct the evaluations

on SIFT1M [33] and Deep1M [10].

Optimizing graphs based on heuristics? First, we carry out an

analysis by comparing ANN graphs that apply different heuristics

in graph construction. The goal is to measure if a certain heuristic

consistently works better than others. Fig. 1 shows the accuracy-

vs-latency between EFANNA [23], HNSW [36], and NSG [25]. We

observe that HNSW and NSG consistently perform better than

EFANNA, one of the best-performing k-NN graph-based methods,

for a wide range of recall regimes. We find out that this is because k-

NN graphs have poor performance on clustered data (the graph has

a high probability of being disconnected). In contrast, both HNSW

and NSG contain heuristics that increase the graphs’ connectivity,

ensuring the other points are reachable from a given starting point.

These results suggest that diversification of edges is indeed crucial

for improving search efficiency. Interestingly, we observe that al-

though NSG is faster than HNSW on SIFT1M in the < 0.98 recall

range; HNSW achieves better search efficiency than NSG when

recall > 0.98. Similarly, NSG outperforms HNSW on Deep1M in

the > 0.95 recall range but is slower when recall < 0.94.

Our hypothesis is that since neither HNSW nor NSG explicitly

maximizes the online search latency-vs-accuracy when construct-

ing graphs, there might be redundant edges in a graph that can

negatively affect search efficiency. Specifically, edges that do not

help reduce the search path length can negatively increase the

neighbor inspection cost because they create redundant computa-

tions. As a result, neither method consistently achieves superior

performance on both datasets. We conjecture that by removing

redundant computations, the ANN search efficiency can be signifi-

cantly improved.

(a) SIFT1M (b) Deep1M

Figure 1: Comparison of EFANNA, HNSW, and NSG in
accuracy-vs-latency. The results show that neither method
consistently achieves a superior performance results.

Highly skewed query distribution. Our second analysis mea-

sures the frequency of visits on all edges. The goal is to evaluate

the load-balancing property of ANN graphs. We randomly sam-

ple 100K vectors from the corresponding learning sets of SIFT1M

and Deep1M as queries. Fig. 2 shows that the bottom layer of the

HNSW graph has a highly skewed distribution. The x-axis shows

the number of visits, and the y-axis indicates the frequencies of

each visit count. The majority of edges are visited only once, and

the frequency roughly follows an exponential decay curve, where

only a small number of edges are highly visited. We further find

that the skewed distribution is caused by the fact that some hub

nodes (e.g., nodes with high in-degree) are much more likely to be

visited than others.

Existing graph-based ANN algorithms often ignore this query

distribution information, which can be exploited for improving

ANN search efficiency. For example, existing graph-based methods

often need to decide an upper bound of out-degree𝑀 for all nodes.

Without query distribution information, it is challenging to decide

how to place such an upper bound to the out-degree𝑀 : (a) a large

𝑀 tends to increase the number of neighbors to examine at a local

point but may decrease the search path length; (b) a small𝑀 gives

the opposite tradeoff. More importantly, it seems suboptimal to

place a fixed upper bound given that there are indeed "hub" nodes

(a) SIFT1M (b) Deep1M

Figure 2: The frequency distributions of visits to edges. The
results show that the distributions are highly skewed.

in the graph that require more connections. Therefore, one opti-

mization opportunity is to let each node adaptively select its own

out-degree, helping avoid redundant computation.

4 GraSP: LEARNING TO OPTIMIZE GRAPHS
In this section, we first provide the overview of our methods (Fig. 3).

Then we will describe the details of its major components.

Problem Definition. Considering a set of 𝑁 𝑑-dimensional em-

bedding vectors 𝑋 = {𝑥1, ..., 𝑥𝑁 }, the graph-based nearest neigh-

bor search problem aims to build a directed graph 𝐺 = (𝑉 , 𝐸),
where each node 𝑣𝑖 ∈ 𝑉 corresponds to a vector 𝑥𝑖 , and each edge

𝑒 𝑗 ∈ 𝐸 represents a relative distance measure (e.g., Euclidean dis-

tance) between two node, such that for a given set of query vectors

𝑌 = {𝑦1, ..., 𝑦𝑀 }, the time to retrieve their nearest neighbors in 𝑋

for a target recall is minimum.

We propose GraSP to tackle this problem, which contains three

major phases.

Stage 1: Probabilistic graph construction. To begin with, we

first introduce a novel probabilistic model called Annealable Simi-

larity Graph (ASG) (Section 4.1), where we associate each edge of a

graph with a learnable edge probability that indicates whether to

keep or remove that edge. This new representation allows framing

edge connectivity refinement as an optimization problem towards

maximizing search efficiency for a large set of training queries. ASG

can be defined on any existing similarity graphs, e.g., those con-

structed with existing heuristic-based methods such as HNSW [36].

Stage 2: Learning edge importance via subgraph sampling
and iterative refinement. To quantitatively measure the edge im-

portance for different queries, we model edge importance as the

robustness of graph search efficiency to edge removal. Such a strat-

egy allows us to define an objective function that reflects the loss

of search efficiency, which is quantified by the distance error for a

query from searching an induced subgraph (𝐺
′
in 2.a) and the full

graph (G
∗
in 2.b) within a search budget. To optimize the objective

function, we introduce a novel subgraph sampling and iterative

refinement approach (2.c , 2.d in Fig. 3). In the beginning, all edges

have equal probabilities (edge weights here are uninformative). Dur-

ing the optimization, GraSP enables exploration and exploitation of

edge probabilities and iteratively refine edge probabilities to create

an ensemble of refined subgraphs.

Stage 3: Final pruning. In this step, we select a small but critical

set of edges to form the final similarity graph and prune the re-

maining edges by masking them out. The final refined graph can

then be used for answering queries.

Entry

q

ü

q
G’(k)G’(k) p

P’

+Δw

+Δw

+Δw

+Δw

+Δw

Enhance pre-constructed
graph G (HNSW, NSG, etc)

with ASG

G

p2

pn

Subgraph search Measure search efficiency loss Refine edge weights

Base vectors

+Δw

+Δw

+Δw

+Δw

+Δw

+Δw

+Δw

+Δw

+Δw

GG

Subgraph sampling G’(1)→G’(2)→··· →G’(K)

Stage 1:Constructing a
probabilistic graph

Stage 2: Learning edge importance

Stage 3: Final pruning

p0 p1

2a 2b 2c

2d

ü
G G

w0 w1 w2

wn

Figure 3: Overview of GraSP, which consists of three stages: 1. Constructing a probabilistic model for a similarity graph; 2.
Learning edge importance via subgraph sampling and iterative refinement; 3. Pruning edges based on learned edge importance.

4.1 Subgraph Sampling and Iterative
Refinement

This section introduces the proposed GraSP approach in detail.

A probabilistic model for similarity graph. Traditionally, sim-

ilarity graphs contain only structure information regarding how

nodes are connected by edges. Here, we introduce a novel proba-

bilistic model for similarity graphs — Annealable Similarity Graph.

Definition 4.1. (Annealable Similarity Graph) Given a similarity
graph 𝐺 (𝑉 , 𝐸), an Annealable Similarity Graph 𝐺 (𝑉 , 𝐸,W) is ob-
tained by associating each edge 𝑒 ∈ 𝐸 with a weight variable𝑤𝑒 ∈ W,
and a transformation function 𝑝 : 𝐸 → (0, 1) such that 𝑝 (𝑒) ≡ 𝑝𝑒
indicates the edge probability of 𝑒 . That is, an independent Bernoulli
random variable 𝑅𝑒 , where P(𝑅𝑒 = 1) = 𝑝𝑒 , P(𝑅𝑒 = 0) = 1 − 𝑝𝑒 is
assigned to each 𝑒 , which decides whether 𝑒 should exist in the graph.

Such a probabilistic model allows sampling of subgraphs in con-

tinuous space, and with associated probabilities. Intuitively, an

edge probability 𝑝𝑒 should be: (i) monotonically increasing as𝑤𝑒
increases; and (ii) lim𝑤𝑒→+∞ 𝑝𝑒 = 1, and lim𝑤𝑒→−∞ 𝑝𝑒 = 0. More

importantly, it is desirable to have 𝑤𝑒 initialized to similar val-

ues for all edges, allowing each edge to have an equal probability

of consideration when there is little information about the edge

probability. As there are more about edge information, 𝑝𝑒 should

converge into a degenerated distribution that allows identifying a

subset of edges that maximizes search efficiency.

To satisfy the above conditions, we introduce the following trans-
formation function 𝑝 for ASG:

𝑝𝑒 (𝑇) =
1

1 + exp
(
−𝑤𝑒+𝜇

𝑇

) (1)

where 𝜇 is a normalizing factor to keep

∑
𝑒∈𝐸 𝑝𝑒 (𝑇𝑛) = 𝐶 a constant

and 𝑇 ∈ (0,∞) is the temperature, which smooths the probabilities

𝑝𝑒 as following. If𝑇 →∞, the probabilities 𝑝𝑒 converges uniformly

to the same value regardless of edge 𝑒 ; on the other hand, if 𝑇 → 0,

the probabilities 𝑝𝑒 converges to either 1 or 0, respectively. Math-

ematically, our definition of the transformation function implies

that the joint distribution of 𝑅𝑒 (𝑇) for all edges 𝑒 should be equal

for 𝑇 → ∞, which corresponds to exploration, and sparsely sup-

ported for 𝑇 → 0, which corresponds to exploitation. We note that

the above definition is closely related to the Fermi-Dirac distribu-

tion [18], which use state energies, temperature, and total chemical

potential to model a physic system.

With the probabilisticmodel, we still need to answer the question:

whether we can measure how removing or keeping an edge would

affect search efficiency, and if so, how to quantitatively obtain the

loss of search efficiency?

Modeling edge importance. In this work, we consider mod-

eling edge importance of proximity graph with respect to search

efficiency as the robustness of search efficiency against edge removal.
We do so by stochastically deleting each edge 𝑒 with probability

1 − 𝑝𝑒 , and we denote the resulting random graph as 𝐺 ′(𝑉 , 𝐸 ′),
where 𝐸 ′ is the set of selected edges. For any query 𝑞, if we find the

exact nearest neighbor in 𝐺 but not in 𝐺 ′ under a search budget,

then we treat the edge hops 𝐻𝑞 (i.e., the set of edges traversed along

the search path in 𝐺 rather than the full set of edges that have

been inspected) of 𝑞 in𝐺 to be important for preserving the search

efficiency, because it is their deletion that causes the failure to find

the nearest neighbor in 𝐺 ′.
We remark that the above way of modeling edge importance

was first introduced in percolation theory [15], to study the phase

transition of a physical system when one or more of its properties

change abruptly after a slight change in controlling variables. It

was then applied to model adversarial attacks to complex networks

such as Internet [46]. To our best knowledge, we are the first to

apply it for modeling edge importance in graph-based ANN search.

Search-efficiency-aware objective function.Oncewe get the
set of edge hops for a query 𝑞 (denote as 𝐻𝑞), we define the loss for

query 𝑞 as how far off the found candidate is relative to its true near-

est neighbor, which is remotely similar to the teacher-student loss

function in the Knowledge Distillation scheme [26]. In particular,

assume 𝐺 answers the query 𝑞 by returning a point 𝑝 , and 𝐺 ′ an-
swers 𝑞 with a candidate 𝑝 ′, we define the search-efficiency-aware

loss over a training set 𝑄 as:

𝐿(𝑄,𝐺,𝐺 ′) = 1

|𝑄 |
∑
𝑞∈𝑄
E

[
𝐿(𝑞,𝐺,𝐺 ′)

]
(2)

𝐿(𝑞,𝐺,𝐺 ′) = 𝛿 ⟨𝑝 ′, 𝑞⟩
𝛿 ⟨𝑝, 𝑞⟩ − 1 (3)

where 𝛿 ⟨·, ·⟩ represents the distance between two nodes. The loss

measures the delta of 𝑞’s nearest neighbor in a subgraph 𝐺 ′ versus
in the full graph 𝐺 .

Learning edge importance via weighted sampling. At each
iteration, the algorithmwill (1) increase the weight of an edge based

on its contribution to the loss and (2) normalize all edge weights (i.e.,

the weight of an unimportant edge will be decreased). To reduce

the loss, we update the weight 𝑤ℎ of ℎ ∈ 𝐻𝑞 by increasing their

weights with Δ𝑤ℎ , which is defined as:

Δ𝑤ℎ = (𝛿 ⟨𝑝
′, 𝑞⟩

𝛿 ⟨𝑝, 𝑞⟩ − 1) · 𝜂,∀ℎ ∈ 𝐻
𝑞

(4)

where 𝜂 represents the learning rate. The idea is that when the

returned candidate 𝑝 ′ in 𝐺 ′ is the exact nearest neighbor as 𝑞 re-
turned by𝐺 , then the deleted edges are less important and Δ𝑤ℎ is 0.

Otherwise, the larger 𝛿 ⟨𝑝 ′, 𝑞⟩ in comparison to 𝛿 ⟨𝑝, 𝑞⟩, the more im-

portance 𝐻𝑞 indicates, and the edge weights of 𝐻𝑞 should increase

more such that 𝐻𝑞 shall have a higher probability being sampled

(i.e., being more important for preserving search efficiency).

At learning time, we would like to obtain a subgraph 𝐺 ′ from 𝐺

by sampling a set of expected E[|𝐸 ′ |] = ⌈𝜆 · |𝐸 |⌉ edges based on their
edge weights, where 𝜆 represents a sampling ratio. One challenge

would be that the number of edges of a random subgraph 𝐺 ′(𝑘)
follows a Poisson binomial distribution: It is the sum of Bernoulli

random variables 𝑅𝑒 , 𝑒 = 1, ..., |𝐸 |, each taking on values 0 and

1 with probabilities 1 − 𝑝𝑒 and 𝑝𝑒 , respectively. However, since

Δ𝑤 ≥ 0 in Eq 4, how to expect the sampled subgraph𝐺 ′(𝑘) to have
E[|𝐸 ′(𝑘) |] edges given that increased weights also increase the sum
of 𝑅𝑒? To address this challenge, we do a binomial normalization
to adjust the edge weights at the beginning of each iteration by

adding a normalizing factor 𝜇 (𝑘) (as in Eq 1) to all edge weights so

that the sum of 𝑅𝑒 equals to |𝐸 ′(𝑘) |:

|𝐸 ′(𝑘) | ≡ E
[∑
𝑒∈𝐸

𝑅𝑒

]
=

∑
𝑒∈𝐸

𝑝𝑒 (𝑇) =
∑
𝑒∈𝐸

1

1 + 𝑒−
𝑤𝑒+𝜇 (𝑘)

𝑇

(5)

where 𝜇 (𝑘) is calculated through the binary search of the computed

sum of probabilities (Appendix B).

Iterative refinement. To make the graph robust to test time

deletion of edges from the input queries, our subgraph sampling

technique also involves an iterative refinement process, where it

generates a sequence of randomized subgraphs:𝐺 ′(1) → 𝐺 ′(2) →
· · · → 𝐺 ′(𝐾), which correspond to 𝐾 optimization steps. At each

step 𝑘 , the edge probability is computed from the weight of the pre-

vious step𝑤 (𝑘 − 1). The new weight𝑤 (𝑘) is then obtained through
learning to minimize the search efficiency aware loss measured on

the newly sampled subgraph 𝐺 ′(𝑘).
The sampling ratio at iteration𝑘 is governed by a sampling policy

0 < 𝜆(𝑘) ≤ 1, which decides how many edges a sampled subgraph

𝐺 ′(𝑘) has. We define 𝜆(𝑘) as:

𝜆(𝑘) = 𝜎 + (𝜆(0) − 𝜎)
(
1 − 𝑘

𝐾

)𝑐
(6)

where 𝜎 is the fraction of selected edges, 𝑐 ∈ {1, 3} and 𝜆(0) >= 𝜎 is

the initial sampling rate (e.g., 1). There is an intuitive and straight-

forward motivation regarding this choice: It selects edges more

randomly in the beginning and gradually becomes more selective

as the optimization is close to the end. Furthermore, we update

𝑇 by 𝑇 (𝑘) = 𝑇0 · 𝛽𝑘 along the iterations, which starts with a rel-

atively high temperature 𝑇0 and decays fast with a decay factor

𝛽 . By generating a sequence of subgraphs varying the sampling

rate, we create an ensemble of sets of subgraphs, which collectively

optimize the joint probability of individual edges.

Putting it together. Algorithm 1 shows the GraSP algorithm.

The optimization process ends when it meets a stopping criterion.

In our current implementation, we use a simple criterion that stops

after a small number of iterations (e.g., ≤ 20). There are other ways

to stop without using a constant number K (e.g., by detecting how

close it is to convergence) that are worth further exploration. Once

the optimization finishes, we re-rank edges based on their final edge

probabilities and select edges with high probabilities according to

the desired keep ratio 𝜎 . In case it detects that the input distribution

has significantly shifted from the training set distributions [38], it

falls back to the original heuristic graph by unmasking the pruned

edges. The computation complexity for our approach is𝑂 (𝐾 × (|𝐸 | ·
𝑙𝑜𝑔(𝑚𝑎𝑥 (W) −𝑚𝑖𝑛(W)) + |𝐸 | + |𝑄 | · 𝑙𝑜𝑔(|𝑉 |) + |𝐸 | · 𝑙𝑜𝑔(|𝐸 |)), and
we provide a detailed analysis in Appendix C.

Algorithm 1 GraSP

1: Input: Base set 𝑋 , learning set 𝑄 .
2: Output: Pruned graph 𝐺 (𝑉 , 𝐸).
3: Parameters: Learning rate 𝜂, starting temperature 𝑇0, decay

factor 𝛽 , keep ratio 𝜎 , max iteration 𝐾 , candidate queue size 𝐿

4: Init: T← T0, k← 0

5: Stage 1: Construct Annealable Similarity Graph G(V, E,
W)

6: Stage 2: Learning edge importance
7: while 𝑘 ≤ 𝐾 do
8: 𝜆 ← 𝜎 + (𝜆(0) − 𝜎)

(
1 − 𝑘

𝐾

)𝑐
9: Normalize𝑤 s.t. |𝐸 ′(𝑘) | = ⌈𝜆(𝑘) · |𝐸 |⌉ ≡ ∑

𝑒∈𝐸
1

1+exp
(
−𝑤𝑒+𝜇 (𝑘)

𝑇

)
10: Randomly sample a subgraph 𝐺 ′(𝑘) based on edge proba-

bilities

11: for 𝑞 in 𝑄 do
12: 𝑝 ′, _← 𝑠𝑒𝑎𝑟𝑐ℎ(𝐺 ′(𝑘), 𝑞, 𝐿)
13: 𝑝, 𝐻𝑞 ← 𝑠𝑒𝑎𝑟𝑐ℎ(𝐺,𝑞, 𝐿)
14: if 𝑝 ≠ 𝑝 ′ then
15: for ℎ in 𝐻𝑞 do
16: 𝑤ℎ ← 𝑤ℎ + (

𝛿 ⟨𝑝′,𝑞⟩
𝛿 ⟨𝑝,𝑞⟩ − 1) · 𝜂

17: 𝑇 ← 𝑇0 · 𝛽𝑘
18: Shuffle 𝑄

19: Stage 3: Pruning edges
20: Select 𝜎 · |𝐸 | highest ranked edges and prune the rest edges

5 EVALUATION
In this section, we conduct empirical evaluations by optimizing the

state-of-the-arts similarity graphs using GraSP.

5.1 Methodology
Implementation details. Our implementation of GraSP is based

on HNSW [1]. We choose HNSW to construct the initial graph due

to its excellent performance in practice [9]. For a given dataset, we

first construct an HNSW graph using the base set. Since HNSW uses

1-greedy search on upper layers (i.e., to find a good starting point at

the bottom layer) and performs N-greedy search at the bottom layer,

which is where the majority of search happens, we apply GraSP

to optimize the bottom layer of the constructed HNSW graph. We

then optimize the HNSW bottom layer using the training set by

fixing the hyperparameters as 𝑇0 = 1, 𝐾 = 20, 𝛽 = 0.8, 𝜂 = 0.1 and

tune 𝜎 = [0.5, 0.9]. We use the hold-out testing vectors provided by

the benchmarks for final evaluation, and we make sure there are no

overlapping between the training set and the testing set to avoid

data leakage. We tune hyperparameters𝑀 and 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 for

the baseline HNSW graphs to get the best performing results, with

the corresponding type of diversification heuristic turned on. We

(a) SIFT1M (b) Deep1M (c) GloVe (d) GIST

Figure 4: Comparison of search time and accuracy on SIFT1M, Deep1M, GloVe, and GIST. For recall (x-axis), larger is better.
For search time (y-axis), lower is better.

empirically find that performing GraSP with 𝜎 = 0.7 on an graph

constructed with the average out-degree M equal or slightly larger

(e.g., M=14–20) than the best performing baseline graph (e.g., M=14)

could lead to better results, via grid search over𝑀 and 𝜎 . We also

note that if the baseline uses a larger M (i.e., which appears to

have more redundant edges) or we tune more hyperparameters of

GraSP, GraSP could achieve even better results than the baseline.

Additional implementation details and all parameters are reported

in Appendix D.

Datasets. We evaluate our approach on four widely used bench-

marks. SIFT1M contains 128-dimensional SIFT descriptors [27]. It

consists 1,000,000 base vectors, 100,000 learning vectors, and 10,000

testing vectors. To prevent the learning from overfitting, we remove

overlapped testing vectors from the original learning set, which

results in 89,983 learning vectors for SIFT1M. Deep1M is a random

1,000,000 subset of one billion 96-dimensional machine-learned

vectors [10]. We sample 100,000 vectors from the provided learn set

for training. For testing, we take the original 10,000 queries. GloVe
is a collection of 200-dimensional word embedding vectors from

Twitter data [44]. We divide the original 1,193,514 vectors to get

base, training, and testing sets, each containing 1,083,514, 100,000,

and 10,000 vectors, respectively. GIST consists 960-dimensional

vectors [19]. It consists 1,000,000 base vectors, 500,000 learning

vectors, and 1,000 testing vectors.

Evaluation metrics. Both latency and accuracy are important

metrics as they measure search efficiency. We measure query la-

tency as the average time of per-query execution (one query at a

time) in millisecond. For accuracy, we measure Recall@1, which

is a challenging metric, as it also measures Precision@1 and any

order inversion causes the loss of accuracy.

Platform.All the experiments were done on a 64-bit Linux Ubuntu

16.04 server with Intel Xeon CPU E5-2650 v4 @ 2.20GHz processor.

5.2 Comparison with HNSW
We first compare GraSP with the baseline HNSWmethod in latency-

vs-recall. We use the default best-first search and vary the search

queue length 𝐿 to obtain search time at different recall regions.

We highlight a few key observations below: For all datasets, the

learning-augmented provides gains at different Recall@1 regions.

For SIFT1M, there are more significant gains at the lower recall

regions, where we observe 1.49X latency reduction at 90% recall. As

the recall increases, the gain becomes smaller. For Deep1M, there

are more significant gains in the range of 93%–99% recall, where we

observe 1.34X latency reduction at 96% recall. For GloVe, the gain

starts to show up at 80% recall and becomes bigger as the recall

increases. For GIST, GraSP provides relatively small yet consistent

gains across all recall ranges.

GraSP is able to provide better performance because it learns

to identify the importance of individual edges through exploiting

query distributions, which allows to better capture the specific

roles of graph vertices. By pruning redundant edges, it only keeps

a fraction of edges crucial for search efficiency, allowing a query to

check less number of edges to find the closest vector. The improved

accuracy under a given time budget is therefore an effect of the

shift of the Pareto curve [2].

5.3 Comparison with NSG
NSG [25] is another state-of-the-art graph-based approach, which

uses heuristics to construct graphs that approximate MRNG. This

is a strong baseline, as it already performs edge control by limiting

the out-degrees of all the nodes to a small value by abandoning the

longer edges. We use the parameters listed on their repository for

corresponding datasets due to their excellent performance.

(a) SIFT1M (b) Deep1M

(c) GloVe (d) GIST

Figure 5: Comparison of GraSP with NSG. The results show
that GraSP outperforms NSG by achieving comparable accu-
racy while providing up to 2.24x faster speedups.

Fig. 5 compares NSG with GraSP. The results show that GraSP

consistently achieves better accuracy-vs-latency than NSG. For

example, GraSP outperforms NSG by 2.24X at 99% recall@1 point,

and it outperforms NSG by 1.45X at 92% recall@1 point. GraSP

outperforms NSG, because it exploits query distribution to optimize

the graph indices by explicitly maximizing search efficiency. We

remark that despite showing better performance than NSG, GraSP

is compatible and complementary to NSG, and the GraSP should

be applicable to NSG to improve its performance as well.

5.4 Comparison with Heuristic Pruning
We also compare GraSP with two pruning methods that are based

on heuristics. 1. Random pruning (RP): we uniformly sample half

of the edges from the bottom layer of HNSW to prune. 2. Reducing
degree (RD): we directly reduce the maximum out-going degree to

half of𝑀 during the graph construction phase. For a given accuracy

target (e.g., 0.98 for SIFT1M, 0.94 for Deep1M, and 0.83 for GloVE),

we vary 𝐿 to find theminimum latency to reach the desired accuracy

and report the results in Table 1.

Dataset Configuration Recall Latency(ms)

SIFT1M

RP 0.966(-1.4%) 0.23

RD 0.982(+0.2%) 0.16

GraSP 0.982(+0.2%) 0.13

Deep1M

RP 0.945(+0.5%) 0.16

RD 0.943(+0.3%) 0.14

GraSP 0.943(+0.3%) 0.1

GloVe

RP 0.814(-1.6%) 1.45

RD 0.83(0%) 0.73

GraSP 0.833(+0.3%) 0.55
Table 1: Comparison between GraSP and heuristic-based
pruning over SIFT1M, Deep1M, and GloVe.

We make two main observations. First, random pruning often

cannot reach the target recall (e.g., on SIFT1M and GloVe), despite

spending more time than the RD and GraSP. This is because random

pruning may accidentally destroy graph properties that are cru-

cial for search efficiency. Second, GraSP achieves faster speed than

directly building an HNSW graph with a smaller out-degree upper-

bound 𝑀 (e.g., M=16). This is interesting but it seems to indicate

first building a large graph with redundant edges and then pruning

can produce a graph with better search quality. From a graph con-

struction perspective, setting a small upperbound 𝑀 reduces the

average out-degree but increases the diameter of the graph, which

may accidentally increase the search path length and lead to worse

performance. In contrast, our approach explicitly maximizes search

efficiency by lowering the expected out-degree.

5.5 Experimental Analysis
In this section, we analyze the convergence of the optimization

process and the effect of pruning ratio (i.e., 1 - keep ratio). We study

how GraSP affects the graph properties and its impact to optimiza-

tion time. We also study how the proposed method responds to

out-of-distribution queries.

Convergence analysis. We analyze the edge probability distribu-

tion at different optimization iterations. Fig. 6 shows that the edge

probability distribution starts with a uniform distribution, which

corresponds to more exploration in the beginning. As the iterative

refinement moves forward, 𝑇 decreases by following the annealing

schedule 𝑇 (𝑘) = 𝑇0 · 𝛽𝑘 . As a result, the distribution shifts to be

more biased: most of the edge probability are distributed around

the two peaks, which indicates that GraSP has entered into an ex-

ploitation phase, where it tends to select edges that are important

for preserving search efficiency. The probability distribution has

converged around the 16–17 iterations. This is consistent with The-

orem A.1, which shows that GraSP eventually converges with the

joint distribution of 𝑅𝑒 (𝑇) for all edges 𝑒 being equal for 𝑇 → ∞
and sparsely supported for 𝑇 → 0.

Effect of 𝜎 and 𝐿. Fig.7a reveals that the learned graph has an

interesting phase transition phenomenon, under different search

budget (𝐿 = 20, 50, 100): by setting the sampling rate 𝜆(𝐾) to 0.5 dur-
ing the optimization, we observe that the search accuracy quickly

drops after a slight change of 𝜎 to be less than 0.5. This is be-

cause GraSP learns to identify half of the edges that maximize the

search efficiency. This result indicates that there is an edge-minimal

graph beyondwhich further deleting edges would lead to significant

accuracy loss. Fig.7b and Fig.7c show the distance computations

(machine independent) and search time (machine dependent) un-

der different edge selection ratio 𝜎 . The results show that (1) the

pruning ratio has a large influence on search speed: smaller 𝜎 often

leads to much fewer distance computations and faster search time

varying 𝐿, and (2) the search time and the distance computation are

linearly correlated. Finally, Fig.7d shows that, as 𝜎 decreases, the

number of edges in the final graph linearly decreases, which is ex-

pected because larger sampling rates indicate that the optimization

is more aggressive in terms of reducing the number of edges.

Graph properties. We are interested in how with or without

GraSP affects graph properties such as the distributions of in-degree

and out-degree. Fig. 8 shows that both approaches create graphs

that have a binomial distribution of in-degree. However, for HNSW

only, the number of neighbors (i.e., out-degree) for all vertices is

distributed around a fixed value (e.g., 32). This is because HNSW

forces all vertices to have a similar number of edges, where some

of the intrinsic distribution of the data, such as variation in density,

is inevitably lost. In contrast, the out-degree of GraSP optimized

graph is smoothed out to have a truncated power-law distribution:

It keeps the connections of "hubs" while limiting the neighbors

for nodes in sparse areas. Interestingly, prior work investigates

graph navigability with truncated power-law degree distribution

for similarity search and indicates that such distribution is likely

to provide efficient search [35]. In our approach, such properties

naturally emerge after the learning (more results in Appendix F).

Optimization time. The learning time of our approach is 77, 40,

and 118 minutes for SIFT, Deep1M, and GloVe, respectively with

single thread, in addition to the index construction time of the

heuristic graphs. The index construction time is 29 minutes for

HNSW
1
, and 3 minutes for NSG (including k-NN construction) on

SIFT1M. Despite taking additional time to learn, we dowant tomake

it clear that the primarily goal of this work is to improve online

search efficiency in order to reduce the total cost of ownership: a

single index that gets queried hundreds of millions of times over

its life cycle, where index construction is one-time cost and is

not a major bottleneck. Additionally, the optimization time can

1
We use a large efConstruction (e.g. 400) than the default 200, which leads to increased

construction time but provides better online search-vs-accuracy performance.

Figure 6: Distribution of edge probability at different learning steps of GraSP. The x-axis shows the probability bins, from 0
to 1 with intervals of 0.1. The y-axis represents the percentage of edges that fall into a bin.

(a) (b)

(c) (d)

Figure 7: Impact of (a) index size, (b) accuracy, (c) distance
computations, and (d) search time, under different selection
ratio 𝜎 and different 𝐿.

be accelerated through parallelism, which we leave to explore in

future work.

Out-of-distributionqueries.To test out how the proposedmethod

responds to out-of-distribution queries, we generated queries with

normal distribution N(0, 1). Fig. 9 shows the comparison with

HNSW. The results indicate that out-of-distribution queries affect

GraSP’s performance more than HNSW. This is somewhat expected,

because our approach optimizes graphs based on query distribution.

An out-of-distribution query serves as an adversarial example to

the learning-based approach. However, in practice, given that both

database vectors and query vectors are generated by the same DNN

model, it is unlikely the case that these out-of-distribution queries

would appear.

6 CONCLUSION AND FUTUREWORK
The similarity graph is an important data structure for building deep

learning applications. It is crucial to make it answer queries with

low latency and high accuracy in production. In this work, we show

that it is possible to further improve the search efficiency of graph-

based similarity search by exploring query distribution, opening

new possibilities for ANN search optimizations. One limitation of

our work is that we have not investigated larger datasets because

(a) In-degree (heuristic) (b) In-degree (learned)

(c) Out-degree (heuristic) (d) Out-degree (learned)

Figure 8: Distributions of in-/out-degree without and with
GraSP optimization on SIFT1M (M=32).

(a) SIFT1M (b) Deep1M

Figure 9: Comparison of out-of-distribution queries.

learning can be computationally intensive as the dataset size grows.

In futurework, we intend to exploremore efficient learningmethods

that will make the learning-based optimization easier to scale to

large-scale datasets. Furthermore, it would be interesting to find

an easier or automatic way to tune the hyperparameters in GraSP,

such that GraSP will be able to automatically prune excess edges

from the graph as much as it will not hurt the recall. This would

offer a great advantage against existing methods, for which we

need to determine a good𝑀 through tuning.

REFERENCES
[1] [n.d.]. Header-only C++/python library for fast approximate nearest neighbors.

https://github.com/nmslib/hnswlib.

[2] [n.d.]. Pareto Efficiency . https://en.wikipedia.org/wiki/Pareto_efficiency. Ac-

cessed: 17-March-2021.

[3] 2019. Faiss: A library for efficient similarity search. https://engineering.fb.com/

data-infrastructure/faiss-a-library-for-efficient-similarity-search/.

[4] Accessed: 05-20-2019. Faiss: A library for efficient similarity search and clustering

of dense vectors. https://github.com/facebookresearch/faiss.

[5] Alexandr Andoni and Piotr Indyk. 2008. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Commun. ACM (2008).

[6] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig

Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Informa-
tion Processing Systems 2015. 1225–1233.

[7] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig

Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In NeurIPS.
1225–1233.

[8] Alexandr Andoni, Piotr Indyk, and Ilya P. Razenshteyn. 2018. Approximate

Nearest Neighbor Search in High Dimensions. CoRR abs/1806.09823 (2018).

[9] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull. 2020. ANN-

Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.

Inf. Syst. 87 (2020). https://doi.org/10.1016/j.is.2019.02.006

[10] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-Scale

Datasets of Deep Descriptors. In CVPR 2016. 2055–2063.
[11] Dmitry Baranchuk and Artem Babenko. 2019. Towards Similarity Graphs Con-

structed by Deep Reinforcement Learning. arXiv:1911.12122 [cs.LG]

[12] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the

Inverted Indices for Billion-Scale Approximate Nearest Neighbors. In ECCV 2018.
209–224.

[13] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rect-

angles. In SIGMOD 1990. 322–331.
[14] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517.

[15] Duncan S Callaway, Mark EJ Newman, Steven H Strogatz, and Duncan J Watts.

2000. Network robustness and fragility: Percolation on random graphs. Physical
review letters 85, 25 (2000), 5468.

[16] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason

Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for
fast approximate nearest neighbor search.

[17] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells

(Eds.). ACM.

[18] Paul Adrien Maurice Dirac. 1926. On the theory of quantum mechanics. Proceed-
ings of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character 112, 762 (1926), 661–677.

[19] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and

Cordelia Schmid. 2009. Evaluation of GIST descriptors for web-scale image

search. In Proceedings of the 8th ACM International Conference on Image and
Video Retrieval, CIVR 2009, Santorini Island, Greece, July 8-10, 2009, Stéphane
Marchand-Maillet and Yiannis Kompatsiaris (Eds.). ACM.

[20] Matthijs Douze, Alexandre Sablayrolles, and Hervé Jégou. 2018. Link and Code:

Fast Indexing With Graphs and Compact Regression Codes. In CVPR 2018.
[21] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series

Approximate Similarity Search. Proc. VLDB Endow. 13, 3 (2019), 403–420.
[22] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-

well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh

Govindan. 2013. Reducing Web Latency: The Virtue of Gentle Aggression. In

SIGCOMM ’13. 159–170.
[23] Cong Fu and Deng Cai. 2016. EFANNA : An Extremely Fast Approximate Nearest

Neighbor Search Algorithm Based on kNN Graph. CoRR abs/1609.07228 (2016).

[24] Cong Fu, Changxu Wang, and Deng Cai. 2019. Satellite System Graph: Towards

the Efficiency Up-Boundary of Graph-Based Approximate Nearest Neighbor

Search. CoRR abs/1907.06146 (2019).

[25] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search with the Navigating Spreading-out Graph. In VLDB’19.
[26] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-

edge in a Neural Network. CoRR abs/1503.02531 (2015).

[27] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. In TPAMI 2011.
[28] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with GPUs. IEEE Transactions on Big Data (2019).
[29] Yannis Kalantidis and Yannis S. Avrithis. [n.d.].

[30] Quoc V. Le and Tomás Mikolov. 2014. Distributed Representations of Sentences

and Documents. In ICML 2014, Vol. 32. JMLR.org, 1188–1196.

[31] D. T. Lee and C. K. Wong. 1977. Worst-case Analysis for Region and Partial

Region Searches in Multidimensional Binary Search Trees and Balanced Quad

Trees. Acta Informatica 9, 1 (March 1977), 23–29.

[32] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Wenjie Zhang, and Xuemin Lin.

2019. Approximate Nearest Neighbor Search on High Dimensional Data - Exper-

iments, Analyses, and Improvement. IEEE Transactions on Knowledge and Data
Engineering (2019).

[33] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.

Int. J. Comput. Vision 60, 2 (Nov. 2004).

[34] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate nearest neighbor algorithm based on navigable small world

graphs. Inf. Syst. 45 (2014), 61–68.
[35] Yury A. Malkov. 2015. Growing homophilic networks are natural optimal navi-

gable small worlds. CoRR abs/1507.06529 (2015).

[36] Yury A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[37] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In ICLR 2013, Yoshua Bengio
and Yann LeCun (Eds.).

[38] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, Nitesh V. Chawla,

and Francisco Herrera. 2012. A unifying view on dataset shift in classification.

Pattern Recognit. (2012), 521–530.
[39] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms

for High Dimensional Data. TPAMI 2014 36, 11 (2014), 2227–2240.
[40] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Allen Ding,

Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic Product

Search. In KDD 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,

Evimaria Terzi, and George Karypis (Eds.). ACM, 2876–2885.

[41] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Allen Ding,

Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic Product

Search. In KDD 2019, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,

Evimaria Terzi, and George Karypis (Eds.). ACM, 2876–2885.

[42] Mohammad Norouzi and David J. Fleet. 2013. Cartesian K-Means. In CVPR 2013.
[43] Mohammad Norouzi, David J. Fleet, and Ruslan Salakhutdinov. 2012. Hamming

DistanceMetric Learning. InAdvances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012. Proceedings
of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. 1070–
1078.

[44] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In EMNLP. 1532–1543.
[45] Xiang Ren, Yujing Wang, Xiao Yu, Jun Yan, Zheng Chen, and Jiawei Han. 2014.

Heterogeneous Graph-based Intent Learning with Queries, Web Pages and

Wikipedia Concepts. In WSDM ’14 (New York, New York, USA). 23–32.

[46] Christian M. Schneider, André A. Moreira, José S. Andrade Jr., Shlomo Havlin,

and Hans J. Herrmann. 2011. Mitigation of Malicious Attacks on Networks. CoRR
abs/1103.1741 (2011). arXiv:1103.1741

[47] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[48] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar

Krishnawamy, and Rohan Kadekodi. 2019. Rand-NSG: Fast Accurate Billion-point

Nearest Neighbor Search on a Single Node. In NeurIPS. 13748–13758.
[49] Danny Sullivan. 2018. FAQ: All about the Google RankBrain algo-

rithm. https://searchengineland.com/faq-all-about-the-new-google-rankbrain-

algorithm-234440.

[50] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun

Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation

in Alibaba. In KDD 2018. 839–848.
[51] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.

End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In SIGIR 2017. 55–64.
[52] Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neighbor

Search in General Metric Spaces. In SODA ’93. 311–321.
[53] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik G. Learned-Miller, and

Jaap Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse

Representation for Inverted Indexing. In CIKM 2018. 497–506.
[54] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient Large-Scale Ap-

proximate Nearest Neighbor Search on OpenCL FPGA. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4924–4932.

[55] Minjia Zhang and Yuxiong He. 2019. GRIP: Multi-Store Capacity-Optimized

High-Performance Nearest Neighbor Search for Vector Search Engine. In CIKM
2019. 1673–1682.

[56] Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren,

and Rong Jin. 2021. Visual Search at Alibaba. CoRR abs/2102.04674 (2021).

arXiv:2102.04674

https://github.com/nmslib/hnswlib
https://en.wikipedia.org/wiki/Pareto_efficiency
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/facebookresearch/faiss
https://doi.org/10.1016/j.is.2019.02.006
https://arxiv.org/abs/1911.12122
https://arxiv.org/abs/1103.1741
https://searchengineland.com/faq-all-about-the-new-google-rankbrain-algorithm-234440
https://searchengineland.com/faq-all-about-the-new-google-rankbrain-algorithm-234440
https://arxiv.org/abs/2102.04674

A CONVERGENCE AND CORRECTNESS
In this part, we provide a theoretically derived proof of the conver-

gence and correctness of our algorithm in Theorem A.1 below.

Theorem A.1. Let 𝐺0 (𝑉 , 𝐸0) be the original graph to prune, and
let 𝑄 be the query set. Suppose there exists a subset of edges 𝐸∗ ⊆ 𝐸0
such that the average recall of retrieving the nearest neighbor in 𝑉
for all queries 𝑞 ∈ 𝑄 using edges in 𝐸∗ is 1. Let 𝐺 (𝑘) be the random
graph at iteration 𝑘 running Algorithm 1, and let {𝑅𝑒 (𝑘)} be the
family of Bernoulli random variables defined on the edges of 𝐺 (𝑘),
with P(𝑅𝑒 (𝑘) = 1) = 𝑝𝑒 (𝑘). Assume that 𝑝𝑒 (𝑘𝑒) < 1

2
for 𝑒 ∈ 𝐸0\𝐸∗

at some step 𝑘𝑒 . Also assume that 𝑇 (𝑘) ≥ 𝑇 (𝑘 + 1) for all 𝑘 . If
𝜎 = 1 − |𝐸∗ |/|𝐸0 |, then:

(1)
∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘 + 1) ≥

∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) for all sufficiently large 𝑘 . In

particular, lim𝑘→∞
∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) exists.

(2) If lim𝑘→∞𝑇 (𝑘) = 0, then lim𝑘→∞ 𝑝𝑒 (𝑘) = 1 for all 𝑒 ∈ 𝐸∗,
and lim𝑘→∞ 𝑝𝑒 (𝑘) = 0 for all 𝑒 ∈ 𝐸0\𝐸∗.

(3) With the condition in (2), suppose 𝑟 (𝑘) denotes the average
expected recall of retrieving the ground truth nearest neighbor
of a query 𝑞 ∈ 𝑄 in a subgraph of 𝐺 (𝑘) randomly sampled
from the joint distribution {𝑅𝑒 (𝑘)}. Then lim𝑘→∞ 𝑟 (𝑘) = 1.

Theorem ??. We start with showing (1). Note that the probability

sum constraints∑
𝑒∈𝐸∗

𝑝𝑒 (𝑘) +
∑

𝑒∈𝐸0\𝐸∗
𝑝𝑒 (𝑘) = (1 − 𝜎) |𝐸0 | = |𝐸∗ |

is satisfied for all 𝑘 . It then suffices to show that∑
𝑒∈𝐸\𝐸∗

𝑝𝑒 (𝑘 + 1) ≤
∑

𝑒∈𝐸\𝐸∗
𝑝𝑒 (𝑘)

for sufficiently large 𝑘 . Observe that 𝑤𝑒 (𝑘) remains a constant

(= 𝑤𝑒 (0)) for all 𝑘 and all 𝑒 ∈ 𝐸0\𝐸∗, and that 𝜇 (𝑘) monotonically

decreases as 𝑘 increases. 𝑤𝑒 (𝑘) remains a constant for all k and

all edges in 𝐸∗ because the recall through all edges in 𝐸∗ is 1, so
the weights associated to these edges are not penalized by the

algorithm. Therefore they remain constant. 𝜇 (𝑘) decreases because
the constraint in Equation 5 monotonically increases as either𝑤𝑒 or

𝜇 (𝑘) increases. During the annealing process, 𝜇 (𝑘) does not increase
since each 𝑤𝑒 does not. We claim that 𝑝𝑒 (𝑘 + 1) ≤ 𝑝𝑒 (𝑘) for all
𝑘 ≥ 𝑘𝑒 . Together with the probability sum constraints this shows

that

∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) is monotonically increasing for 𝑘 ≥ max𝑒 𝑘𝑒 .

Since

∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) is bounded from above, lim𝑘→∞

∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) =

sup𝑘

∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) exists.

For (2), since lim𝑘 𝑇𝑘 = 0, observe that lim𝑘→∞ 𝑝𝑒 (𝑘) → 0 for

all 𝑒 ∈ 𝐸0\𝐸∗. Thus the probability sum constraint enforces that

lim𝑘

∑
𝑒∈𝐸∗ 𝑝𝑒 (𝑘) = |𝐸∗ |. Recall that lim inf𝑘 𝑥𝑘 + lim sup𝑘 𝑦𝑘 ≥

lim inf𝑘 (𝑥𝑘 + 𝑦𝑘) for any real sequences 𝑥𝑘 and 𝑦𝑘 . Now consider

any 𝑒 ∈ 𝐸∗, we have
lim inf

𝑘→∞
𝑝𝑒 (𝑘)

≥ lim

𝑘→∞

∑
𝑒∈𝐸∗

𝑝𝑒 (𝑘) − lim sup

𝑘→∞

∑
𝑒′∈𝐸∗\{𝑒′ }

𝑝𝑒′ (𝑘)

≥ |𝐸∗ | −
∑

𝑒′∈𝐸∗\{𝑒′ }
lim sup

𝑘→∞
𝑝𝑒′ (𝑘)

≥ |𝐸∗ | −
∑

𝑒′∈𝐸∗\{𝑒′ }
1

= |𝐸∗ | −
(
|𝐸∗ | − 1

)
= 1.

which implies that lim𝑘 𝑝𝑒 (𝑘) = 1.

To prove (3), we first define the notation 𝜒 (𝑞, 𝐸) to be the indi-

cator function of whether the ground truth nearest neighbor of a

query 𝑞 can be retrieved in𝐺 using a subset of edges 𝐸 ⊆ 𝐸0. More

precisely, 𝜒 (𝑞, 𝐸) = 1 if the nearest neighbor of 𝑞 can be retrieved

using edges in 𝐸; and 𝜒 (𝑞, 𝐸) = 0 otherwise. Note that the average

recall at step 𝑘 can be written as

𝑟𝑘 =
1

|𝑄 |
∑
𝑞∈𝑄

∑
𝐸⊆𝐸0

𝜒 (𝑞, 𝐸)P(𝐸 is chosen from 𝐺 (𝑘)),

where the second summation is amongst all subsets of 𝐸0. Since

each edge being chosen is independent of other edges, we can

expand the probability and it follows that

𝑟𝑘 =
1

|𝑄 |
∑
𝑞∈𝑄

∑
𝐸⊆𝐸0

(
𝜒 (𝑞, 𝐸)

∏
𝑒∈𝐸

𝑝𝑒 (𝑘)
∏
𝑒∉𝐸

(1 − 𝑝𝑒 (𝑘))
)
.

Since we assumed that 𝜒 (𝑞, 𝐸∗) = 1 for all 𝑞 ∈ 𝑄 , it follows that
𝜒 (𝑞, 𝐸) = 1 for all 𝐸 ⊇ 𝐸∗. Thus

𝑟𝑘 ≥
1

|𝑄 |
∑
𝑞∈𝑄

∑
𝐸∗⊆𝐸⊆𝐸0

(∏
𝑒∈𝐸

𝑝𝑒 (𝑘)
∏
𝑒∉𝐸

(1 − 𝑝𝑒 (𝑘))
)
.

Note that ∑
𝐸∗⊆𝐸⊆𝐸0

(∏
𝑒∈𝐸

𝑝𝑒 (𝑘)
∏
𝑒∉𝐸

(1 − 𝑝𝑒 (𝑘))
)

=
∑

𝐸∗⊆𝐸⊆𝐸0

©­«
∏
𝑒∈𝐸∗

𝑝𝑒 (𝑘)
∏

𝑒∈𝐸\𝐸∗
𝑝𝑒 (𝑘)

∏
𝑒∉𝐸

(1 − 𝑝𝑒 (𝑘))
ª®¬

=
∏
𝑒∈𝐸∗

𝑝𝑒 (𝑘)
∑

𝐸∗⊆𝐸⊆𝐸0

©­«
∏

𝑒∈𝐸\𝐸∗
𝑝𝑒 (𝑘)

∏
𝑒∉𝐸

(1 − 𝑝𝑒 (𝑘))
ª®¬

=
∏
𝑒∈𝐸∗

𝑝𝑒 (𝑘)
∑

𝐸∗⊆𝐸⊆𝐸0
P(𝐸 is chosen from 𝐸0\𝐸∗)

=
∏
𝑒∈𝐸∗

𝑝𝑒 (𝑘).

Therefore

lim inf

𝑘→∞
𝑟𝑘 ≥ lim inf

𝑘

1

|𝑄 |
∑
𝑞∈𝑄

∏
𝑒∈𝐸∗

𝑝𝑒 (𝑘)

≥ 1

|𝑄 |
∑
𝑞∈𝑄

lim inf

𝑘→∞

∏
𝑒∈𝐸∗

𝑝𝑒 (𝑘)

≥ 1

|𝑄 |
∑
𝑞∈𝑄

∏
𝑒∈𝐸∗

lim inf

𝑘→∞
𝑝𝑒 (𝑘)

=
1

|𝑄 |
∑
𝑞∈𝑄

1 = 1.

This shows that lim𝑘→∞ 𝑟𝑘 = 1 and completes the proof. □

B BINOMIAL WEIGHT NORMALIZATION
Algorithm 2 describes the details of the binomial normalization and

graph sampling based on normalized weights. The binary search is

equivalent to find 𝜇 (𝑘) to have the sum of join distribution equal

to the target number of edges in the sampled subgraph, which has

a time complexity of 𝑂 (|𝐸 | · log(max(𝑤 (𝑘)) −min(𝑤 (𝑘))).

EFANNA HNSW NSG GraSP
K L iter S R M efC nn R L C M efS (learning)

SIFT1M 200 200 10 10 100 14 500 200 50 40 500 14 400

Deep1M 200 200 10 10 100 14 500 200 50 40 500 20 400

GloVe - - - - - 16 500 400 70 60 500 20 400

GIST - - - - - 24 500 400 70 60 500 24 400

Table 2: Hyperparameters for running SIFT1M, Deep1M, GloVe, and GIST.

Algorithm 2 Binomial_Weight_Normalization()

1: Input: 𝐺∗ (𝑉 , 𝐸), sampling ratio 𝜆,W = {𝑤𝑒 |𝑒 ∈ 𝐸}, tempera-

ture T

2: Output: 𝐺≻(V, E’)
3: E’← {}

4: target← 𝜆 · |𝐸 |
5: max_w←𝑚𝑎𝑥 (W)
6: min_w←𝑚𝑖𝑛(W)
7: avg_w← 𝑇 · 𝑙𝑜𝑔(𝜆

1−𝜆)
8: search_range_min← avg_w - max_w

9: search_range_max← avg_w - min_w

10: 𝜇 ← binary_search(arr=W, left=search_range_min,

right=search_range_max, num=target)

11: for e in 𝐸 do
12: 𝑤𝑒 ← 𝑤𝑒 + 𝜇 ⊲ Normalize weights with offset 𝜇

13: 𝑝𝑒 =
1

1+𝑒𝑥𝑝 (−𝑤𝑒
𝑇
) ⊲ Recompute keep probability

C COMPUTATION COMPLEXITY
GraSP (Algorithm 1) goes through K optimization steps. For each

step, the cost consists of three parts:

• The cost of binomial normalization, which has a complexity

of 𝑂 (|𝐸 | · 𝑙𝑜𝑔(𝑚𝑎𝑥 (W) −𝑚𝑖𝑛(W)));
• The cost of sampling to get a subgraph, which takes 𝑂 (|𝐸 |)
complexity;

• The cost for updating the edge weights, which is 𝑂 (|𝑄 | ·
𝑙𝑜𝑔(|𝑉 |)), because queries take logarithmic time complexity

on proximity graphs.

• The cost for the final ranking of the edge weights, which is

𝑂 (|𝐸 | · 𝑙𝑜𝑔(|𝐸 |)).
Consequently, GraSP has the computation complexity of 𝑂 (𝐾 ×
(|𝐸 | · 𝑙𝑜𝑔(𝑚𝑎𝑥 (W) −𝑚𝑖𝑛(W)) + |𝐸 | + |𝑄 | · 𝑙𝑜𝑔(|𝑉 |) + |𝐸 | · 𝑙𝑜𝑔(|𝐸 |)).
The value 𝐾 is often small (e.g., < 20) in practice.

D IMPLEMENTATION
We implement GraSP in C++. Subgraph sampling is implemented by

using a binary mask map, which is of the same size as the number of

edges, to determines edges that are kept in the sampled subgraph.

The edges that are masked are not visited when searching the

sampled subgraphs. However, their weight can still be updated (e.g.,

during the binomial normalization). For our baseline, we also try

to test a concurrent method that uses reinforcement learning to

construct graphs [11]. However, the open-sourced code reports a

proxy metric NDC (num. of distance calculations) instead of actual

latency. When measuring the actual execution time, it appears to

be orders of magnitude slower than our approach. By looking into

their implementation, the code is implemented in Python and is not

optimized for online searching. In contrast, we implement GraSP

using C++ and take high performance into account. For this reason,

we focus on evaluation of high performance graph-based ANN

methods.

E HYPERPARAMETERS
Table 2 reports the hyperparameters for each dataset/configuration.

F MORE RESULTS ON GRAPH PROPERTY
ANALYSIS

(a) In-degree (heuristic) (b) In-degree (learned)

(c) Out-degree (heuristic) (d) Out-degree (learned)

Figure 10: Distributions of in-/out-degree from heuristic-
based and learning-augmented graphs over Deep1M.

This part includes more results on graph property analysis. In

particular, Fig. 10 show the frequency distributions of in-degree

and out-degree from heuristic-based (HNSW) and learned (GraSP)

proximity graphs. Overall, we observe similar results as SIFT: the

in-degree remains to have a binomial distribution, and the out-

degree has a truncated power-law degree distribution for the GraSP

graph. The heuristic-based graph has an uneven distribution with a

discontinuity from out-degree 32 and 33. This is because the HNSW

graph has a nested hierarchy, where upper layers are recursively

sampled from the bottom layer. While nodes at the bottom layer

have maximally M = 64 outgoing edges for each node, nodes at the

upper layers have only 32 (
𝑀
2
) outgoing edges per node. Therefore,

the discontinuity at 32 is caused by those upper layers, which have

a different edge distribution.

	Abstract
	1 Introduction
	2 Related Work
	3 Observations and Opportunities
	4 GraSP: Learning to Optimize Graphs
	4.1 Subgraph Sampling and Iterative Refinement

	5 Evaluation
	5.1 Methodology
	5.2 Comparison with HNSW
	5.3 Comparison with NSG
	5.4 Comparison with Heuristic Pruning
	5.5 Experimental Analysis

	6 Conclusion and Future Work
	References
	A Convergence and Correctness
	B Binomial Weight Normalization
	C Computation Complexity
	D Implementation
	E Hyperparameters
	F More Results on Graph Property Analysis

